
Domain Pascal
Language Reference

Domain Pascal Language Reference

Apollo Systems Division
A subsidiary of
rl~ HEWLETT
~ PACKARD

Order No. 000792-AOl

© Hewlett-Packard Co. 1981, 1990.

First Printing:
Last Printing:

September 1981
December 1990

UNIX is a registered trademark of AT&T in the USA and other countries.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights reserved. No part
of this document may be photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions
as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227.7013. Hewlett-Packard Co., 3000 Hanover St., Palo Alto, CA 94304

10 9 8 7 6 5 4 3 2 1

Preface

The Domain Pascal Language Reference explains how to code, compile, bind, and execute
Domain Pascal programs.

We've organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

,Chapter 9

Appendix A

Appendix B

Appendix C

Appendix D

Introduces Domain Pascal and provides an overview of its extensions.

Defines Domain Pascal building blocks (like the length of an identi­
fier) and describes the structure of the main program.

Explains all the Domain Pascal data types.

Contains alphabetized listings describing all the functions, procedures,
statements, and operators that you can use in the code portion of a
program.

Explains how to declare and call procedures and functions.

Details compiling, binding, debugging, and executing.

Describes how you can break your program into two or more sepa­
rately compiled modules (which can be in Domain Pascal, Domain
FORTRAN, or Domain/C).

Contains an overview of the I/O resources available to Domain Pascal
programmers.

Covers compiler diagnostic messages and how to handle them.

Contains a table of Domain Pascal reserved words and predeclared
identifiers.

Contains an ISO Latin-l table that includes ASCII characters.

Describes Domain Pascal's extensions to ISO/ANSI standard Pascal.

Describes Domain Pascal's deviations from ISO/ANSI standard Pascal.

Preface iii

I
Appendix E Describes built-in routines available for systems programmers.

Appendix F Describes how to obtain the best floating-point performance on
MC68040-based Domain workstations.

Audience

We wrote this manual to serve programmers at a variety of levels of Pascal expertise. Our
goal is to keep the writing as simple as possible, but to assume that you know the funda­
mentals of Pascal programming. If you are totally inexperienced in a block-structured lan­
guage like Pascal or PL/I, you probably should study a Pascal tutorial before using this
manual. If you have a little experience with a block-structured language, you will probably
benefit most by experimenting with the many examples we provide (particularly in Chapter
4). If you are an expert Pascal programmer, turn to Appendix C first for a list of our ex­
tensions to standard Pascal.

Summary of Technical Changes

This manual describes Version 8.8 of the Domain Pascal compiler. The last update to the
Domain Pascal manual was at SR10. The following list summarizes the features added to
Domain Pascal since SR10:

• The introduction of new Boolean operators and then and or else

• Modified operator precedence rules (to accommodate the and then and or else Boolean
operators)

• The following new compiler directives:

%push_aJignment and %pop_aJignment

• The following new compiler options:

iv Pre/ace

-bounds violation and -no bounds_violation

-compress and -ncompress

The -cpu arguments mathlib_srlO, mathlib, mathchip, Cpal, a88k, and
m68k

-nclines

-prasm and -nprasm

• Compatibility with NFS (Network File System)

• Larger maximum set size

• Enforcement of name compatibility when assigning the address of an actual routine
to a procedure or function pointer

Change bars in the margin indicate technical changes since the last revision of this manual.
Because Appendix F is completely new with this revision, it does not have change bars.

Related Manuals

The file /install/doc/apoll%s.v.latest_software_release_number _manuals lists current ti­
tles and revisions for all available manuals.

For example, at SR10.3 refer to /install/doc/apoll%s.v.l0.3_manuals to check that you
are using the correct version of manuals. You may also want to use this file to check that
you have ordered all of the manuals that you need.

(If you are using the Aegis environment, you can access the same information through the
Help system by typing help manuals.)

Refer to the Apollo Documentation Quick Reference (002685) for a complete list of relate~
documents. For more information on topics related to the Domain Pascal compiler, refer
to the following documents:

• Getting Started with Domain/OS (002348) explains the fundamentals of the Domain sys­
tem.

• The Domain/OS Call Reference, Volume 1 (007196) and Volume 2 (012888) describe the
system service routines provided by the operating system and explain how to call these
routines from user programs.

• Programming with Domain/OS Calls (005506) covers writing Domain Pascal programs
that use stream calls and many other important system calls.

• The Domain/C Language Reference (002093) describes the Domain implementation of
the C language.

• The Domain FORTRAN Language Reference (000530) describes the Domain implemen­
tation of FORTRAN.

• The Domain/C++ Programmer's Guide (017874), the AT&T C++ Language System
(017823), and the C++ Primer by Stanley Lippman (017997) describe the Domain imple­
mentation of C++.

• The Domain Floating-Point Guide (015853) describes floating-point calculations on
Domain systems.

Preface v

• The Aegis Command Reference (002547) describes the Aegis environment.

• The BSD Command Reference (005800) describes the BSD environment.

• The SysV Command Reference (005798) describes the SysV environment.

• The Domain/OS Programming Environment Reference (011010) describes how to use the
bind utility to link object modules and the librarian utility to create library files.

• The BSD Unix Programmer's Manual (017272) and the SysV Programmer's Guide, Vol­
ume II (017625) describe the make and dbx utilities and the Source Code Control Sys­
tem (SCCS).

• The Domain Distributed Debugging Environment Reference (011024) describes the high­
level language debugger.

• The Domain Software Engineering Environment (DSEE) Reference (003016), Getting
Started with DSEE (08788), and Engineering in the DSEE Environment (008790) de­
scribe the DSEE product.

• The Domain/Dialogue User's Guide (004299) describes the Domain/Dialogue product.

• The Open Dialogue Reference (012807), Creating User Interfaces with Open Dialogue
(011167), the MOTIF Style Guide (017153), and Customizing Open Dialogue (011166)
describe the Open Dialogue product.

• Analyzing Program Performance with Domain/PAK (008096) describes the Domain Per­
formance Analysis Kit.

• Using NFS on the Domain Network (010414) describes the use of the Network File
System (NFS).

You can order Apollo documentation by calling 1-800-5290. If you are calling from out­
side the U.S., you can dial (508) 256-6600 and ask for Apollo Direct Channel.

Pascal Tutorials

• Jensen, K. and N. Wirth, revised by Mickel, A. and J. Miner. Pascal User Manual and
Report. Third Edition. Springer-Verlag, New York: 1985.

• Grogono, Peter. Programming in Pascal. Revised Edition. Reading, Massachusetts: Ad­
dison-Wesley, 1980.

• Cooper, D., and M. Clancy. Oh! Pascal! New York: WW Norton, 1982.

vi Preface

Does This Manual Support Your Software?

This manual was released with Version 8.8 of Domain Pascal. Domain Pascal Version 8.8
runs on Software Release 10.0 or a later version of Domain/OS.

To verify which version of operating system software you are running, type

bldt

If you are running Domain/IX on a release of the operating system earlier than SR10.0,
then type

leom/bldt

To check the version of Domain Pascal, type:

leom/pas -version

If you are using a later version of software than that with which this manual was released,
use one of the following ways to check if this manual was revised or if additional manuals
exist:

• Read Chapter 3 of the release document that shipped with your product. The release
document is online. It has one of the following pathnames:

linstall/doe/apollo/pas. v. version number. m notes
linstall/doe/apollo/pas. v. version -number. mpi notes
linstall/doe/apollo/pas. v. version=number. p __ oOtes
linstall/doe/apollo/pas. v. version_number. pmx __ notes

• Telephone 1-800-225-5290. If you are calling from outside the U.S., dial (508)
256-6600 and ask for Apollo Direct Channel.

• Refer to the lists of manuals described in the preceding section, "Related Manuals."

To determine which of two versions of the same manual is newer, refer to the order num­
ber that is printed on the title page. Every order number has a 3-digit suffix; for example,
-AOO. A higher suffix number indicates a more recently released manual. For example, a
manual with suffix -A02 is newer than the same manual with suffix -AOI.

Preface vii

Problems, Questions, and Suggestions

If you have a question or problem with our hardware, software, or documentation, please
contact either your HP Response Center or your local HP Representative.

You may call the Tech Pubs Connection with your questions and comments about our doc­
umentation:

• In the USA, call 1-800-441-2909

• Outside the USA, call (508) 256-6600 extension 2434

The recorded message that you will hear when you call includes information about our new
manuals.

You may also use the Reader's Response Form at the back of this manual to submit com­
ments about documentation.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

literal values Bold words or characters in formats and command descriptions repre­
sent commands or keywords that you must use literally. Pathnames
are also in bold. Bold words in text indicate the first use of a new
term.

user-supplied values Italic words or characters in formats and command descriptions repre­
sent values that you must supply.

sample user input In samples, information that the user enters appears in color.

Domain extensions Domain-specific features of Pascal appear in color.

output

[]

viii Pre/ace

Information that the system displays appears in this
typeface.

Large square brackets enclose optional items in formats and command

descriptions.

Regular sized square brackets in Pascal statements assume their Pascal
meanings.

{ }

< >

CTRLI

I
----88----

Braces enclose a list from which you must choose an item in formats
and command descriptions. In sample Pascal statements, braces as­
sume their Pascal meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRLI followed by the name of a key indicates a control
character sequence. Hold down <CTRL> while you press the key.

Horizontal ellipsis points indicate that you can repeat the preceding
item one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or exam­
ple have been omitted.

Change bars in the margin indicate technical changes from the last
revision of this manual. Because Appendix F is completely new with
this revision, it does not have change bars.

This symbol indicates the end of a chapter.

----88----

Preface ix

Chapter 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8

Chapter 2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.5.1
2.1.6
2.1.7

Contents

Introduction

A Sample Program
Online Sample Programs

What You Get When You Install Sample Programs
Creating Links to the Sample Programs
Invoking getpas

Overview of Domain Pascal Extensions
Extensions to Program Organization
Extensions to Data Types
Extensions to Code .. .
Extensions to Routines
Extensions to Program Development
External Routines and Cross-Language Communication
Extensions to I/O
Diagnostic Messages

Blueprint of a Program

Building Blocks of Domain Pascal
Identifiers .. .
Integers
Real Numbers .. .
Comments
Strings .. .

Embedding Special Characters in Strings
Case-Sensitivity
Spreading Source Code Across Multiple Lines

1-1
1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-7
1-7
1-7
1-7

2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-6
2-6

Contents xi

2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5
2.2.2.6
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3
2.2.3.4
2.2.4
2.3
2.4

Chapter 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7
3.7.1
3.B
3.B.1

xii Contents

Organization .. .
Program Heading .. .
Declarations .. .

Label Declaration Part
Const Declaration Part
Type Declaration Part
Var Declaration Part
Define Declaration Part-Extension
Attribute Declaration Part-Extension

Routines
Routine Heading
Declaration Part of a Routine
Nested Routines
Action Part of a Routine

Action Part of the Main Program
Global and Local Variables
Nested Routines

Data Types

Data Type Overview .. .
Integers .. .

Declaring Integer Variables
Initializing Integer Variables-Extension
Defining Integer Constants
Internal Representation of Integers

Real Numbers
Declaring Real Variables
Initializing Real Variables-Extension
Defining Real Constants
Internal Representation of Real Numbers

Unsigned Types
Booleans

Initializing Boolean Variables-Extension
Defining Boolean Constants
Internal Representation of Boolean Variables

Characters .. .
Declaring Character Variables
Initializing Character Variables-Extension
Defining Character Constants
Internal Representation of Char Variables

Enumerated Data
Internal Representation of Enumerated Variables

Subrange Data .. .
Internal Representation ~f Subranges

2-7
2-10
2-11
2-11
2-12
2-13
2-14
2-15
2-15
2-15
2-16
2-16
2-17
2-17
2-17
2-17
2-19

3-1
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-9
3-10
3-10
3-11
3-11
3-11
3-11
3-12
3-12
3-13
3-13
3-13
3-14
3-14

3.9 Sets. .. 3-15
Declaring Set Variables
Initializing Set Variables-Extension
Internal Representation of Sets

3.9.1
3.9.2
3.9.3
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.10.5

Records .. .

3.10.5.1
3.10.5.2
3.10.5.3
3.10.5.4
3.10.5.5
3.10.5.6
3.10.5.7
3.10.6

Fixed Records .. .
Variant Records
Unpacked Records and Packed Records
Initializing Data in a Record-Extension
Internal Representation of Unpacked Records

Alignment .. .
Natural Alignment
Guaranteed Default Alignment of Record Fields
Default Alignment
Layout of Unpacked Records
Memory Allocation
Arranging Record Fields in Descending Order by Size

Aligned Record and Unaligned Record Data Type

3-15
3-15
3-16
3-17
3-17
3-19
3-21
3-21
3-22
3-23
3-23
3-23
3-26
3-26
3-27
3-29
3-33

3.10.7 Internal Representation of Packed Records. .. 3-35
3.11 Arrays. .. 3-37
3.11.1 Initializing Array Variables-Extension 3-38
3.11.1.1 Initializing Multiple Components with a Single

Expression-Extension 3-39
3.11.1.2 Initializing Components to Individual Values-Extension. 3-39
3.11.1.3 Initializing Arrays Using Repeat Counts-Extension. 3-40
3.11.1. 4 Initializing Components in Any Order-Extension 3-41
3.11.1.5 Defaulting the Size of an Array-Extension 3-42
3.11.1.6
3.11.2
3.11.3

Mixing Methods of Array Initialization-Extension
Variable-Length Arrays-Extension
Packed Arrays .. .

3.11.4 Internal Representation of Arrays
3.11.4.1 Non-Packed Arrays
3.11.4.2 Packed Arrays
3.12 Files
3.13 Pointers .. .
3.13. 1 Standard Pointer Type
3.13.2
3.13.3
3.13.4
3.13.5
3.14
3.15
3.15.1
3.15.2
3.15.3
3.15.4
3.15.5

U niv _ptr-Extension
Procedure and Function Pointer Data Types-Extension
Initializing Pointer Variables-Extension
Internal Representation of Pointers

Putting Variables into Overlay Sections-Extension
Attributes for Variables and Types-Extension

Volatile-Extension .. .
Atomic-Extension .. .
Device-Extension
Address-Extension
Size-Extension

3-43
3-44
3-45
3-45
3-45
3-47
3-48
3-49
3-49
3-50
3-50
3-51
3-51
3-52
3-53
3-56
3-56
3-57
3-59
3-60

Contents xiii

3.15.6
3.15.6.1
3.15.6.2
3.15.6.3
3.15.6.4
3.15.6.5
3.15.6.6

3.15.6.7
3.15.6.8
3.15.7
3.15.8

Alignment-Extension
Format for the aligned and natural Attributes
Aligning Objects on Natural Boundaries
Using the aligned Attribute to Prevent Padding
Ensuring the Same Layout in All Alignment Environments
Suppressing Informational Messages about Alignment
Informing the Compiler that an Object Is Not Naturally Aligned
(Series 10000 Only)
Dereferencing Pointers
Passing Arguments by Reference

Attribute Inheritance-Extension
Special Considerations-Extension

3-62
3-63
3-64
3-69
3-72
3-74

3.16 Attribute Declaration Part-Extension

3-74
3-75
3-76
3-76
3-77
3-78

Chapter 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.6
4.7

xiv Contents

Code

Overview: Conditional Branching
Overview: Looping
Overview: Mathematical Operators

Expansion of Operands
Predeclared Mathematical Functions
Mixing Signed and Unsigned Operands in Expressions

Overview: 1/0
Overview: Miscellaneous Routines and Statements
Overview: Systems Programming Routines
Encyclopedia of Domain Pascal Code

Abs
Addr (Extension)
Align (Extension)
And, And Then .. .
Append (Extension)
Arctan .. .

4-1
4-2
4-2
4-5
4-5
4-6
4-8
4-8
4-10
4-10
4-12
4-13
4-16
4-18
4-21
4-23

Array Operations. .. 4-25
Arshft (Extension) ... 4-29
Begin. .. 4-31
Bit Operators (Extension) .. 4-33
Case. .. 4-36
Chr. .. 4-39
Close (Extension) .. 4-41
Compiler Directives (Extension) .. 4-43
Cos. .. 4-59
Ctop (Extension) .. 4-61
Discard (Extension) 4-62
Dispose .. 4-64
Div .. 4-66
Do .. 4-68

Downto
Else .. .
End .. .
Eof
Eoln 0.000.00.0 ••••••••••••••••••••••

Exit (Extension) .. 0 ••

Exp .. 0 •••••• 0 •••••• 0 •••••• 0.00 •••••••••• · •••••••••••• 0 •••

Expressions 0 •••••• 0 • 0 0 ••••••••••••••

Find 0 •••••• 0 •••••••••••••••••••••••••••••••

Firstof (Extension) 0 • 0 •••••••••••••••••••••••••••••••••

For 0 ••••••• 0 •• 0 •• 000 ••••••• 0 •••

Get. 0 ••

Goto 0 •••••••••••••••

If 0 ••••••••••••••• 0 •• 0 •••••••••••••••••••••• 0 •••••

In .. .
In_range (Extension) 0 •••• 0 ••••••••••••••••••••••••••••

Lastof (Extension) .. .
Ln
Lshft (Extension) .. .
Max (Extension)
Min (Extension)
Mod .. .
New .. .
Next (Extension)
Nil
Not
Odd .. .
Of .. .
Open (Extension)
Or, Or Else .. .
Ord .. .
Pack .. .
Page .. .
Pointer Operations
Pred .. .
Ptoc (Extension) .. .
Put
Read, Readln .. .
Record Operations•............
Repeat/Until
Replace (Extension)
Reset
Return (Extension) .. .
Rewrite
Round .. .
Rshft (Extension)
Set Operations .. .
Sin

4-69
4-70
4-71
4-73
4-75
4-77
4-79
4-81
4-83
4-87
4-89
4-92
4-95
4-99
4-102
4-104
4-106
4-107
4-109
4-111
4-113
4-115
4-117
4-123
4-125
4-126
4-128
4-129
4-130
4-134
4-137
4-139
4-142
4-144
4-147
4-149
4-152
4-155
4-158
4-161
4-163
4-164
4-166
4-168
4-170
4-171
4-173
4-179

Contents xv

Chapter 5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.4.1
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.5.10
5.5.11
5.5.12
5.6
5.6.1
,5.6.2

xvi Contents

Sizeof (Extension) .. .
Sqr
Sqrt .. .
Statements
Substr (Extension) .. .
Succ .. .
Then
To .. .
Trunc
Type Transfer Functions (Extension)
Unpack
Until
Variable-Length String Operations
While
With .. .
Write, Writeln
Xor (Extension) .. .

Procedures and Functions

Parameter List .. .
Argument Passing Conventions
Parameter Types

Variable Parameters and Value Parameters
In, Out, and In Out-Extension
Univ-Universal Parameter Specification-Extension
Pointers to Routines-Extension

Data Type Checking
Procedures and Functions as Parameters
Routine Options

Routine Option Syntax
forward
extern-Extension
internal-Extension .. .
variable-Extension
abnormal-Extension
val_param-Extension
nosave-Extension
noreturn-Extension
dO_return-Extension
aO_return-Extension
c-param-Extension .. .

Defining Your Own Routine Options
Syntax of the routine_option Declaration Part
Examples of the routine_option Declaration Part

4-181
4-184
4-186
4-188
4-189
4-191
4-193
4-194
4-195
4-197
4-200
4-203
4-204
4-208
4-211
4-215
4-221

5-1
5-3
5-5
5-6
5-7
5-10
5-11
5-13
5-13
5-15
5-15
5-16
5-17
5-17
5-17
5-19
5-19
5-19
5-20
5-20
5-20
5-21
5-21
5-21
5-22

5.6.3
5.6.4
5.7
5.7.1
5.8

Chapter 6

6.1
6.2
6.3
6.3.1
6.4
6.4.1
6.4.2
6.4.3
6.4.4

6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.9.1
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19
6.4.20
6.4.21
6.4.22

6.4.23
6.4.24

Rules for Using the routine_option Declaration Part
Using default_routine_options

Attribute List-Extension
Section-Extension .. .

Recursion .. .

Program Development

Program Development in a Domain Environment
Compiler Variants .. .
Compiling .. .

Compiler Output .. .
Compiler Options .. .

-ac and -pic: Memory Addressing
-alnchk: Displaying Messages about Alignment
-b and -nb: Binary Output
-bounds_violation and -no_bounds_ violation: Array Bounds
Checking .. .
-comchk and -ncomchk: Comment Checking
-compress and -ncompress: Object File Storage
-cond and -ncond: Conditional Compilation
-config: Conditional Processing
-cpu: Target Workstation Selection

Choosing an Appropriate -cpu Argument: The cpuhelp Utility .
-db. -ndb. -dba. -dbs: Debugger Preparation
-exp and -nexp: Expanded Listing File
-frnd and -nfrnd: Floating-Point Rounding
-idir: Search Alternate Directories for Include Files
-imap and -nimap: Generate Symbol Table l\faps for Include Files.
-indexl and -nindexl: Array Reference Index
-info nand -ninfo: Information Messages
-inlib: Library Files
-iso and -niso: Standard Pascal
-I and -nl: Listing Files
-map and -nmap: Symbol Table Map
-msgs and -nmsgs: Messages
-natural and -nnatural: Setting the Environment to Natural
Alignment
-nclines: COFF Line Number Tables
-opt: Optimized Code

6.4.24.1
6.4.25

Using the Debugger at Higher Optimization Levels
-prasm and -nprasm: Expanded Listing Format

6.4.26
6.4.27
6.4.28
6.4.29

-slib: Precompilation of Include Files
-std and -nstd: Nonstandard References
-subchk and -nsubchk: Subscript Checking
-version: Version of Compiler

5-22
5-22
5-24
5-24
5-26

6-1
6-3
6-4
6-4
6-5
6-9
6-9
6-9

6-10
6-11
6-12
6-12
6-i2
6-14
6-17
6-18
6-18
6-19
6-20
6-21
6-21
6-21
6-22
6-23
6-24
6-24
6-25

6-25
6-26
6-26
6-32
6-33
6-33
6-35
6-35
6-35

Contents xvii

6.4.30
6.4.31
6.5
6.5.1
6.5.2
6.6
6.7
6.8
6.8.1
6.8.2
6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.10

Chapter 7

7.1
7.1.1
7.2
7.2.1
7.2.2
7.2.2.1
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5

xviii Contents

-warn and -nwarn: Warning Messages
-xrs and -nxrs: Register Saving

Linking Programs .. ' .. .
The Id Utility
The bind Command

Archiving and Using Libraries
Executing a Program
Debugging Programs in a Domain Environment

The Domain Distributed Debugging Environment Utility
The dbx Utility

Program Development Tools
Traceback (tb) ,
The DSEE Product .. .
Open Dialogue and Domain/Dialogue
Domain/PAK

Program Development Using the Network File System (NFS)

External Routines and Cross-Language
Communication

Modules
Module Heading .. .

Accessing a Variable Stored in Another Pascal Module
Method 1 .. .
Method 2 .. .

Initializing Extern Variable Arrays
Method 3 .. .
Method4 .. .

Accessing a Routine Stored in Another Pascal Module
Extern .. .
Internal
Method 1 .. .
Method 2 .. .

Calling a FORTRAN Routine from Pascal
Data Type Correspondence for Pascal and FORTRAN

Boolean and Logical Correspondence
Simulating FORTRAN's Complex Data Type
Array Correspondence

Passing Data Between FORTRAN and Pascal
Calling FORTRAN Functions and Subroutines

Calling a Function
Calling a Subroutine
Passing Character Arguments
Passing a Mixture of Data Types
Passing Procedures and Functions

6-35
6-36
6-36
6-36
6-37
6-38
6-39
6-39
6-39
6-40
6-40
6-40
6-41
6-42
6-43
6-43

7-1
7-2
7-3
7-4
7-4
7-5
7-6
7-7
7-8
7-8
7-8
7-8
7-10
7-13
7-14
7-15
7-15
7-16
7-17
7-17
7-18
7-19
7-20
7-21
7-24

7.8
7.8.1
7.8.2
7.8.3
7.9
7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.6.1
7.9.6.2

Chapter 8

Calling a C Routine from Pascal
Reconciling Differences in Argument Passing
Case-Sensitivity Issues
U sing Registers .. .

Data Type Correspondence for Pascal and C
Passing Integers and Real Numbers
Passing Strings .
Passing Arrays .. .
Passing Pointers
Passing Procedures and Functions
Data Sharing Between C and Pascal

Declaring .data and .bss Global Variables
Creating Overlay Data Sections

Input and Output

7-28
7-29
7-29
7-29
7-30
7-30
7-32
7-36
7-38
7-41
7-43
7-43
7-45

8.1 Some Background on Domain I/O 8-1
8.1.1 Input/Output Stream (lOS) Calls .. 8-1
8.1.2 VFMT Calls. .. 8-2
8.1.3 File Variables and Stream IDs. .. 8-3
8.1.4 Default Input/Output Streams. .. 8-3
8.1.5 Interactive I/O .. 8-4
8.1.6 Stream Markers. .. 8-5
8.1.7 File Organization .. 8-6
8.2 Predeclared Domain Pascal I/O Procedures .. 8-6
8.2.1 Creating and Opening a New File 8-6
8.2.2 Opening an Existing File. .. 8-7
8.2.3 Reading from a File .. 8-7
8.2.4 Writing to a File ... 8-8
8.2.5 Closing a File. .. 8-9

Chapter 9 Diagnostic Messages

9.1 Errors Reported by Open and Find .. 9-1
9.1.1 Printing Error Messages 9-2
9.1.2 Testing for Specific Errors 9-3
9.2 Compiler Error, Warning, and Information Messages 9-4
9.2.1 Error, Fatal Error, Warning, and Information Message Conventions. 9-5
9.2.2 Error, Warning, and Information Messages 9-5
9.3 Run-Time Error Messages. .. 9-50
9.3.1 Causes of Run-Time Errors. .. 9-50
9.3.2 Debugging Run-Time Errors. .. 9-52
9.3.3 Operating System Error Messages 9-52
9.3.4 Floating-Point Errors 9-54

Contents xix

Appendix A Reserved Words and Predeclared Identifiers

Reserved Words and Predeclared Identifiers 00000 0 0 0 0 0 0000000 0 0 0 0 0 00000000 A-l

Appendix B ISO Latin-l Table

ISO Latin-l Table 0 0 0 . 0 0 0 B-1

Appendix C

Col
Col.1
Co1.2
Col.3
C.l.4
Col.S
Col.6
Col.7
C.2
C.2.1
Co202
C.2.3
Co2.4
C.2oS
C.2.6
C.2.7
Co2.S
C.3
Co301
Co302
C.3.3
Co303
C.3.4
Co3.S
Co306
C.307
Co3oS
Co309
Co3010
Co3.12
C.3.13
Co3014

xx Contents

Extensions to Standard Pascal

Extensions to Program Organization 0
Identifiers 0 . 0 0 0 0 . 0 0 . 0 0 0 0
Integers 000 .. 0 . 0 0 0 0 0 0 0 . 0 0 00
Comments 0 0 0
Sections 00 ... 0.0 ... 0 .. 000. 0 .. 0 . 0 0 .. 0 00 0
Declarations 0 0 . 0 0 . 0 .. 0 0 .. 0 . 0 0 . 0 0 . 0 0
Constants 0000.0.00. 0 ... 0 0 0 .. 0 . 0 . 0 0 0 0 0
Labels .. 0 0 0 .. 0 . 0 0 0 .. 0 . 0 0 0 0 0 . 0 . 0 ... 0 0 . 0 0 0 .0

Extensions to Data Types 0 0 . 0 0 .. 0 0 0 0 0 .. 0
Initializing Variables in the Var Declaration Part 0 0 .. 0
Integers 00' 0 . 0 . 0 0 0 0 0 0 0
Reals .. 0 0 0 . 0 0 .. 0 0 0 0 0 0 0 . 0 0 ... 0
Pointer Types ... 0 0 . 0 0 0 0 0
Variable-Length Strings o. 0 0 . 0 ... 0 .. 0 0 . 0 0 . 0 0
Named Sections . 0 0 ... 0 0 .. 0 . 0 0 0 0 ... 0 0 . 0 0 0 ..
Variable and Type Attributes 0 . 0 0 0 0
Aligned Record and Unaligned Record 0

Extensions to Code ... 0 0 .. 0 0 0 .. 0 0 0
Exponentiation Operator 0 0 0 0
Bit Operators 0 0 . 0 0 ... 0 0
Boolean Short-Circuit Operators 0 . 0
Bh-Shift Functions 0 ... 0.00 .. 0 0
Compiler Directives 0 0 ... 0 0 .. 0 . 0
Addr Function 0 0 0 . 0 0
Align Function 0 0 .. 0 0 0 0 0 0 . 0 0 0 0
Max and Min Functions 0 ... 0 0 0 . 0 0 .. 0 0 . 0 0 0 . 0 0 0
Discard Procedure .. 0 0 0 0 0 . 0 . 0 0 .. 0 .. 0 0 0 . 0 .. 0 0
Routines for Variable-Length Strings 0 0 0 . 0 . 0 .. 0 0 0 0 0 0 ..
1/0 Procedures 0 .. 0 0 0 0 . 0 0 .. 0 0 . 0
Loops 0 ... 00 0.' . 0 0 0 o. 0 0 00
Range of a Specified Data Type 0 0 0 0 0 0 . 0 ... 0 0 .. 0 ... 0 0 0 ... 0
Integer Subrange Testing . 0 0 0 . 0 0 0 . 0 ... 0 0 0 .. .

C-1
C-1
C-1
C-2
C-2
C-2
C-3
C-3
C-4
C-4
C-4
C-4
C-4
C-S
C-S
C-S
C-6
C-6
C-6
C-6
C-6
C-6
C-7
C-7
C-7
C-7
C-7
C-S
C-S
C-9
C-9
C-9

C.3.1S
C.3.16
C.3.17
C.3.18
C.3.19
C.3.20
C.4
C.4.1
C.4.2
C.4.3
C.4.4
C.S
C.6

Extensions to Read and Readln
Premature Return from Routines
Memory Allocation of a Variable
Extensions to With .. .
Type Transfer Functions
Extensions to Write and Writeln

Extensions to Routines .. .
Direction of Data Transfer
Universal Parameter Specification
Routine Options
Routine Attribute List

Modularity
Other Features of Domain Pascal

C-9
C-9
C-10
C-10
C-11
C-11
C-11
C-11
C-12
C-12
C-13
C-14
C-14

Appendix D Deviations from Standard Pascal

D.1 Deviations from the Standard D-1
D.2 Deviations from Specific Sections of the Standard D-2

Appendix E Systems Programming Routines

E.1 Overview .. E-1
E.2 Restrictions for Use ... E-2

Appendix F Optimizing Floating-Point Performance on
MC68040-Based Domain Workstations

Index

F.1 Instruction Emulation .. F-2
F.2 How to Determine If an Application Relies Heavily on Instruction

F.3
F.3.1

F.3.2
F.3.3
F.4
F.4.1
F.4.2
F.S

Emulation <. <. : •••••••• '. " ••••••.••••••••.•••. ' F:::"2
How Instruction Emulation Affects Performance

Changing from -cpu 3000 (-cpu mathchip) to -cpu mathlib or
-cpu mathlib_srlO .. .
Changing from -cpu any to -cpu mathlib or -cpu mathIib_srlO .. .
Changing from -cpu any to -cpu mathchip (-cpu 3000)

What Steps to Take for Your Application
Should You Recompile?
If You Recompile, Which -cpu Argument Should You Use?

If You Get Different Results on the 68040 and the 68020/68030

F-3

F-4
F-4
F-4
F-4
F-4
F-S
F-7

Contents xxi

Figures

1-1.

2-1.
2-2.
2-3.
2-4.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-23.
3-24.
3-25.
3-26.
3-27.
3-28.
3-29.

5-1.
5-2.
5-3.

5-4.

xxii Contents

Sample Program .. .

Format of Main Program in Domain Pascal
Labeled Main Program
Global Variables Example
Nesting Example

Program Declaring All Available Data Types
16-Bit Integer Format
32-Bit Integer Format
Single-Precision Floating-Point Format
Double-Precision Floating-Point Format
Storage of Sample Set
Natural Alignment for Pascal Simple Data Types
Default Layout of Record S 1
Layout of Record S2 .. .
Naturally Aligned Record S3 with 1-Byte Padding
Layout of S4 Using Word Alignment
Memory Arrangement for Record with Poorly Arranged Fields
Memory Arrangement According to Decreasing Size of Fields
Array of SI Records, Not Naturally Aligned
An Aligned Record Type Record
An Unaligned Record Type Record
Sample Packed Record
Pointer Variable Format
Naturally Aligned Record S
Array of S Records
Naturally Aligned Record S
Naturally Aligned Record S 1
Default Layout for S 1
Layout for SI with Byte Alignment Specified
Layout for SI with Natural Alignment Specified
Layout for SI with Word Alignment Specified
Layout for SI with Word Alignment for B Specified
Naturally Aligned Structure S2
Word Aligned Structure S2

Program Illustrating Variable Parameters: var_parameter_example
Program Illustrating Value Parameters: value_parameter_example
Program Illustrating in, out, and in out Value Passing:
in_out_example
Program and Module Illustrating Pointers to Routines:
pass_routine_ptrs and square

1-1

2-8
2-9
2-18
2-20

3-3
3-5
3-5
3-8
3-9
3-16
3-25
3-27
3-27
3-28
3-29
3-30
3-31
3-32
3-34
3-35
3-37
3-51
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-71
3-72
3-73
3-73

5-6
5-7

5-9

5-12

Tables

5-5.
5-6.

6-1.
6-2.

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.
7-11.
7-12.
7-13.
7-14.
7-15.
7-16.
7-17.
7-18.
7-19.
7-20.
7-21.
7-22.
7-23.
7-24.
7-25.

9-1.

F-1.

2-1.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

Program Illustrating the forward Option: forward_example
Program Illustrating the variable Option: variable_attribute_example

Program Development in a Domain System
A Program Illustrating Conditional Variables: config_example

Format of a Module .. .
Method 1 for Accessing an External Routine
Method 2 for Accessing an External Routine
Another Example of Calling External Routines
An Example of Calling FORTRAN: pas_to_ftn_hypo_func
An Example of Calling FORTRAN: hypotenuse
An Example of Calling FORTRAN: pas_to_ftn_hypo_sub
An Example of Calling FORTRAN: hypot_sub
An Example of Calling FORTRAN: pas_to_ftn_mixed
An Example of Calling FORTRAN: mixed_types
An Example of Calling FORTRAN: pass_func_to_fortran_p
An Example of Calling FORTRAN: funcs_for_fortran_p
An Example of Calling FORTRAN: sort_array_f
An Example of Calling C: pas_to_c_hypo
An Example of Calling C: hypot_c
An Example of Calling C: pas_to_c_stringsl
An Example of Calling C: capitalize
An Example of Calling C: pas_to_c_strings2
An Example of Calling C: pass_char
An Example of Calling C: pas_to_c_arrays
An Example of Calling C: single_dim
An Example of Calling C: pas_to_c_ptrs
An Example of Calling C: append
An Example of Calling C: sort_array_c
An Example of Calling C: pass_func_to_c_p

System Memory and Run-Time Errors

Which -cpu Argument Is Best for Your Application?

Domain Pascal Mathematical Operators

Representation of an Enumerated Variable
Guaranteed Default and Natural Alignment for Simple Data Types .. .
Storage of Packed Record Fields
Size of One Element of an Array
Storage of Packed Array Elements
Summary of Attributes for Variables and Types
Size of Simple Data Types

5-16
5-18

6-2
6-13

7-2
7-9
7-10
7-12
7-18
7-18
7-19
7-20
7-22
7-23
7-25
7-26
7-27
7-31
7-31
7-32
7-33
7-34
7-35
7-37
7-37
7-39
7-40
7-41
7-42

9-51

F-6

2-13

3-14
3-24
3-36
3-46
3-47
3-55
3-61

Contents xxiii

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.

5-1.

6-1.
6-2.
6-3.
6-4.

7-1.
7-2.

8-1.

9-1.
9-2.

A-1.
A-2.

B-1.

E-1.

F-1.

xxiv Contents

Domain Pascal Operators
Exponentiation Expressions
Order of Precedence in Evaluating Expressions
Mathematical Functions
Predeclared 1/0 Procedures
Miscellaneous Elements
Systems Programming Routines
Truth Table for & (Bitwise And Operator)
Truth Table for ! (Bitwise Or Operator)
Truth Table for - (Bitwise Not Operator)
Compiler Directives
Truth Table for Logical or Operator
Set Operators .. .
Truth Table for xor Function

Argument Passing Conventions

Sample Object File Names
Domain Pascal Compiler Options
Arguments to the -cpu Option
Relative Performance with Different -cpu Arguments

Domain Pascal and Domain FORTRAN Data Types
Domain Pascal and Domain/C Data Types

The Default Streams .. .

Common Error Codes Returned by open
Common Error Codes Returned by find

Reserved Words .. .
Predeclared Identifiers

ISO Latin-1 Codes

Systems Programming Routines

Emulated Intrinsic Functions

----88----

4-3
4-4
4-4
4-6
4-8
4-9
4-10
4-33
4-34
4-34
4-44
4-134
4-174
4-221

5-5

6-5
6-6
6-16
6-17

7-14
7-30

8-4

9-3
9-3

A-1
A-2

B-2

E-1

F-3

Chapter 1

Introduction

You should be somewhat familiar with Pascal before attempting to use this manual. If you
are not, please consult a good Pascal tutorial. (We've listed some good tutorials in the
Preface.) If you are somewhat familiar with Pascal or if you are expert in a highly block­
structured language such as PL/I, then you should be able to write programs in Domain
Pascal after reading this manual.

1.1 A Sample Program

The best way to get started with Domain Pascal is to write, compile, and execute a simple
program. Figure 1-1 shows a simple program that you can use to get started.

PROGRAM getting started;
{A simple program to tryout.}

VAR
x integer16;
y : integer32;

BEGIN
write('Enter an integer -- ');
readln(x);
y := x * 2;
writeln;
writeln(y:l, ' is twice', x:l);

END.

Figure 1-1. Sample Program

Although you are welcome to type in this program yourself, it is also available through the
getpas utility. The following section contains details about using getpas to run sample pro­
grams.

Introduction 1-1

Suppose you store the program in the file easy. pas. (Although it is not required that the
filename end with the .pas extension, we recommend its use so that you can readily iden­
tify Pascal source programs.)

To compile a program, simply enter the shell command pas followed by the filename. If
you do use the .pas extension, you can include or omit that extension at this step. Domain
Pascal doesn't care which way you type it. For example, to compile easy.pas, you can en­
ter either of the following commands:

$ pas easy

or

$ pas easy. pas

The compiler creates an executable object in filename easy. bin. To execute this object you
merely enter its name. For example:

$ easy. bin
Enter an integer -- 15

30 is twice 15

1.2 Online Sample Programs

Many of the programs from this manual are stored online, along with sample programs
from other Domain manuals. These programs come automatically with the Domain Pascal
product. They illustrate features of the Domain Pascal language, and demonstrate pro­
gramming with Domain graphics calls and system calls. You retrieve these online sample
programs with the getpas utility.

1.2.1 What You Get When You Install Sample Programs

When you (or your system administrator) load the Domain Pascal product, the install pro­
cedure will ask if you want to install sample programs. We recommend that you answer
"y" (for yes). If you answer "y", the install program will store the following three files in
the /domain_examples/pascal_examples directory:

examples This is a master file containing all the sample Pascal programs.

list_of_examples This is a help file describing all the sample Pascal programs.

getpas This is the utility that retrieves the sample programs out of the exam­
ples file.

Note that the sample programs take up a lot of disk space (> 600 Kbytes), so we recom­
mend that you install the sample programs in only one site on the network and have users
link to them.

1-2 Introduction

1.2.2 Creating Links to the Sample Programs

If you want to be able to invoke getpas from any directory on the system, you must create
the appropriate links. The links differ according to your type of environment. Also, be­
fore you can set up the links, you must find out the name of the disk on which the exam­
ples are stored, and use that name as node in the command lines shown below.

If you are in the Aegis environment, you can set up the following link:

$ crl -/com/getpas IInode/domain_examples/pascal_examples/getpas

If you are in a UNIX environment, you can set up the following link:

$ In -s IInodeldomain_examples/pascal_examples/getpas a_dirlgetpas

where node is the name of the disk where the examples are stored and a_dir is the name
of a directory in your path.

If node is not your node, then you should also create one of the following links, depending
on your operating system environment:

$ crl /domain_examples/pascal_examples Ilnodeldomain_examples/pascal_examples

$ In -s IInodeldomain_examples/pascal_examples Idomain_examples/pascal_examples

NOTE: Instead of creating links you can set your working directory to the
IInodeldomain_examples/pascal_examples directory and in­
voke getpas from there.

1.2.3 Invoking getpas

You invoke getpas in the same manner regardless of the operating system environment.

There are two different ways to invoke getpas. The first, and simplest, way is to specify
its name on any shell command line.

For example, in an Aegis environment:

$ getpas

After you invoke getpas, the utility will prompt you for the appropriate information.

The second way to invoke getpas is to indicate the desired information on the command
line itself. To do so, issue a command with the following format:

$ getpas sampleyrogram_name outputJile_name

Introduction 1-3

For example, the following command line finds the sample program named getting_started
and writes it to pathname IIdolphin/pascalJ)rograms/getting_started. pas:

$ getpas getting_started II dol phin/pascal_programsl getting_started. pas

For full details on using getpas, issue the following command:

$ getpas -usage

1.3 Overview of Domain Pascal Extensions

Domain Pascal supports many extensions to ISOI ANSI standard Pascal. The purpose of
this section is to provide an overview of these extensions. For a complete list of all the ex­
tensions, see Appendix C. All extensions to the standard are marked in color like this or
are noted explicitly in text as an extension. For a list of omissions from standard Pascal,
see Appendix D.

Naturally, the more you take advantage of Domain Pascal extensions, the less portable
your code will be. Therefore, if you are very concerned with portability, you should avoid
using the extensions.

1.3.1 Extensions to Program Organization

Chapter 2 describes the organization of a Domain Pascal program contained within one
file. Following is an overview of the extensions described within the chapter. You can

• Specify an underscore U or dollar sign ($) in an identifier.

• Specify integers in any base from 2 to 16.

• Specify comments in three ways.

• Specify that the compiler assign the code or data in your program to nondefault
named sections.

• Declare the label, const, type, and var declaration parts in any order.

• Declare define and attribute parts in addition to the standard declaration parts.

• Use constant expressions when declaring constants, as long as the components of
the expressions are constants.

• Use both identifiers and integers as labels.

1-4 Introduction

1.3.2 Extensions to Data Types

Chapter 3 describes the data types supported by Domain Pascal. Domain Pascal supports
the following extensions that allow you to

• Specify two additional pointer types. The first is a special pointer to procedures
and functions. The second is a universal pointer type that will hold a pointer to a
variable of any data type.

• Initialize static variables in the var declaration part of your program.

• Group variables into named sections for better run-time performance.

• Specify variable and type attributes that let you better control compiler optimiza­
tion and data layout.

• Embed unprintable characters in string constants.

• Create variable-length strings.

• Specify two additional record types-aligned record and unaligned record. You
can use the first type to make sure that records are always naturally aligned, and
you can use the second to make sure that records are always aligned on word
boundaries.

1.3.3 Extensions to Code

Chapter 4 describes the action portion of your program. Domain Pascal supports the fol­
lowing extensions to executable statements:

• An addr function that returns the address of a specified variable

• An align function that returns a correctly aligned copy of an expression passed as
a routine parameter

• An append procedure for concatenating strings

• Bit operators or functions for bitwise and, not, or, and exclusive or operations

• Three bit-shift functions (rshft, arshft, and Ishft)

• Many compiler directives that enable features like include files and conditional
compilation

• A ctop procedure for converting a C-style string into a Domain Pascal variable­
length string

• A discard procedure for explicitly discarding an expression's value and so sup­
pressing some compiler optimizations

Introduction 1-5

• An exit statement for jumping out of the current loop

• An exponentiation operator (* *)

• A find procedure for locating a specified element in a file

• A firstof and a lastof function for returning the first and last possible value of a
specified data type

• Some additional capabilities for the if statement

• An in_range function for determining whether a specified value is within the de­
fined range of an integer subrange or enumerated type

• A max and a min function for finding the greater and lesser of two specified ex­
pressions

• A next statement for skipping over the current iteration of a loop

• An open procedure for opening files and a close procedure for closing files

• A ptoc procedure for converting a Domain Pascal variable-length string into a C­
style string

• A replace procedure that allows you to modify an existing element in a file

• A return statement for causing a premature return to a calling procedure or func­
tion

• A sizeof function for'returning the size (in bytes) that a specified data type re­
quires in storage

• A substr function for extracting a substring from a string

• Additional type transfer functions that transform the data type of a variable or
expression into some other data type

• Some additional capabilities for the with statement

1.3.4 Extensions to Routines

Chapter 5 describes procedures and functions (routines). This chapter documents exten­
sions that allow you to:

• Specify the direction of parameter passing with the special in, out, and in out
keywords.

• Use the univ keyword to suppress parameter type checking.

• Specify routine attribute clauses, routine options clauses, and a routine option dec­
laration part to control how the compiler processes a routine.

• Specify argument lists on both the forward declaration and the routine heading of
routines declared past the calling statement.

1-6 Introduction

1.3.5 Extensions to Program Development

Chapter 6 explains how to compile, bind, debug, and execute your program. Program de­
velopment tools are an implementation-dependent feature of a Pascal implementation; that
is, there is no standard for these tools.

1.3.6 External Routines and Cross-Language Communication

Chapter 7 explains how to write a program that accesses code or data written in another
separately compiled module or library. It also describes how to access routines written in
Domain FORTRAN or Domain/C. The entire chapter describes features that are
implementation-dependent.

1.3.7 Extensions to 1/0

Chapter 8 describes input and output from a Domain Pascal programmer's point of view.
Domain Pascal supports all the standard I/O procedures. In addition, it supports the open,
close, find, and replace procedures. As a further extension to the standard, Domain
Pascal permits you to access the operating system's I/O and formatting system calls~

1.3.8 Diagnostic Messages

Chapter 9 lists compile-time and run-time messages and explains how to deal with them.
Diagnostic messages are an implementation-dependent feature of Pascal.

-------00-------

Introduction 1-7

Chapter 2

Blueprint of a Program

This chapter describes the building blocks and organization of a Domain Pascal program.

2.1 Building Blocks 9f Domain Pascal

In this section we describe the basic building blocks or elements of the Domain implemen­
tation of Pascal. We define identifiers, integers, real numbers, comments, and strings, and
we explore case-sensitivity and spreading source code across multiple lines.

2.1.1 Identifiers

In this manual, the term "identifier" refers to any sequence of characters that meets the
following criteria:

• The first character is a letter (ASCII values 65 through 90 and 97 through 122)

• The remaining characters are any of the following:

A ... Z and a ... z (ASCII values 65 through 90 and 97 through 122)
0 ... 9
_ (underscore)
$ (dollar sign)

Identifiers are case-insensitive. An identifier can have up to 4096 characters.

Blueprint of a Program 2-1

2.1.2 Integers

2.1.3

The first character of an integer must be a positive sign (+), a negative sign (-), or a digit.
Each successive character must be a digit. (See the "Integers" section in Chapter 3 for a
description of the range of various integer data types.)

An unsigned integer must begin with a digit. Each successive character must be a digit.

Note that Pascal prohibits two consecutive mathematical operators. If you want to divide 9
by -3, you might be tempted to use the following expression:

9 DIV -3 {WRONG!}

However, this produces an error, since Pascal interprets the negative sign as the subtraction
operator (and that makes two mathematical operators in a row). Where the sign of an inte­
ger can be confused with an addition or subtraction operator, enclose the integer within
parentheses. Thus, the correct expression for 9 divided by -3 is:

9 DIV (-3) {RIGHT!}

Pascal assumes a default of base 10 for integers. If you want to express an integer in an­
other base, use the following syntax:

base#value

For base, enter an integer from 2 to 16. For value, enter any integer within that base. If
the base is greater than 10, use the letters A through F (or a through f) to represent digits
with the values 10 through 15.

For example, consider the following declarations of integer constants:

half life .- 5260; /* default (base 10) */
hexagrams .- 16#lc6; /* hexadecimal (base 16) */
luck .- 2#10010; /* binary (base 2) */
wheat .- 8#723; /* octal (base 8) */

Real Numbers

Domain Pascal supports the standard Pascal definition of a real number literal, which is

integer. unsigned_integerEinteger

In other words, a valid real number literal may contain a decimal point, but it doesn't
have to. If the real number literal contains a decimal point, you must specify at least one
digit to the left of the decimal point and at least one digit to the right of the decimal point.

2-2 Blueprint of a Program

To express expanded notation (powers of 10), use the letter e or E followed by the expo­
nent; for example:

5.2
5.2EO
-5.2E3
5.2E-2

means
means
means
means

+5.2
+5.2
-5200.0
+0.052

Compare the right and wrong way for writing decimals in your program:

.5 {wrong}
0.5 {right}
5E-l {right}

Note that although using .5 in your source code causes an error at compile time, entering
.5 as input data to a real variable does not cause an error at run time.

2.1.4 Comments

You can specify comments in any of the following three ways:

{ comment}
(* comment *)
"comment"

For example, here are three comments:

{ This is a comment. }
(* This is a comment. *)
"This is a comment."

The spaces before and after the comment delimiters are for clarity only; you don't have to
include these spaces.

NOTE: If you use a compiler directive within comment delimiters you
cannot use spaces. Also, surrounding a compiler directive by
comment delimiters does not necessarily cause it to be treated as
a comment by the compiler. This is because you can specify a
compiler directive anywhere a comment is valid by specifying its
name inside a comment or as a statement; see the listing for
"Compiler Directives" in Chapter 4 for details.

Unlike standard Pascal, the comment delimiters of Domain Pascal must match. For exam­
ple, a comment that starts with a left brace doesn't end until the compiler encounters a
right brace. Therefore, you can nest comments, for example:

{ You can (*nest*) comments inside other comments. }

Blueprint of a Program 2-3

Standard Pascal does not permit nested comments. If you want to use unmatched comment
delimiters, as standard Pascal allows, you must compile with the -iso option. (See Section
6.4.18 for details about this option.)

The Domain Pascal compiler ignores the text of the comment, and interprets the first
matching delimiter as the end of the comment. Use quotation marks to set off comments
only if you are converting existing applications to the Domain system. In all other pro­
grams, you should use either of the other two methods.

Note that Pascal comments can stretch across multiple lines; for example, the following is a
valid comment:

{ This is a comment
that stretches across
multiple lines. }

2.1.5 Strings

NOTE: You can use the -comchk compiler option (described in Chapter
6) to warn you if a new comment starts before an old one finishes.
This option can help you find places where you forgot to close a
comment.

We refer to strings throughout this manual. In Domain Pascal, a string is a sequence of
characters. A string can be represented by a string literal, which is formed by enclosing a
sequence of characters in single quotes ("). Strings differ from identifiers in that you can
use any character within a string. Here are some sample strings:

'This is a string.'
'18'
'b[2-{q"%pl'
'can"t'

To include a single quote in a string, write the single quote twice; for example:

'! can"t do it.'
'Then don"t try!'

NOTE: Within a string, Domain Pascal treats the comment delimiters as
ordinary characters rather than as comment delimiters.

2.1. 5.1 Embedding Special Characters in Strings

The Domain Pascal compiler allows you to embed any ISO Latin-1 character in a string by
placing the decimal ISO Latin-1 value in parentheses. This is especially useful for embed­
ding unprintable characters. (The ISO Latin-1 character set, described in Appendix B,
includes the ASCII character set.)

2-4 Blueprint of a Program

For example, the following statements cause the compiler to output a tab (ISO Latin-l
value 9) following the text line:

CONST
TAB 9;

writeln(~Print a tab: ~(TAB»;

In essence, the compiler concatenates two string literals, one designated by the normal
single quotes, and the other designated by the new ISO Latin-l code syntax. There is no I
limit to the number of special characters and strings that you can concatenate provided
that the total number of characters is not greater than 1024 and that the first component is
a string within single quotation marks. For example, all of the following definitions are
legal:

CONST
NUL = 0;
LF 10;
CR 13;
SI ~newline'(CR)(LF);

S2 ~three carriage returns~ (13) (CR) (13) ~followed by more text~;
S3 ~A null-terminated string~(NUL);

However, it is illegal to begin a string with an ASCII code:

S3 := (CR)(LF)~newline~; {ILLEGAL!}

The compiler supports an alternative syntax that allows you to specify more than one ISO
Latin-l code at a time by enclosing all of the ISO Latin-l codes in parentheses, separated
by commas.

F or instance, the expression

'newline' (CR) (LF)

can also be written

'newline' (CR,LF)

Blueprint of a Program 2-5

The following example illustrates some uses of embedded characters:

PROGRAM print_special_strings;
CONST·

NUL 0;
BEL 7;
TAB 9;
LF 10;
CR = 13;

BEGIN
writeln('Output four bells' (BEL) (BEL) (BEL) (BEL»;
writeln('Print two tabs' (TAB ,TAB) 'followed by text');
writeln('Print a carriage return' (CR) 'and linefeed' (LF»;

END.

2.1.6 Case-Sensitivity

Domain Pascal, like standard Pascal, is case-insensitive to keywords and identifiers (i.e.,
variables, constants, types, and labels), but case-sensitive to strings. That is, Domai.n Pascal
makes no distinction between uppercase and lowercase letters except within a string. For
example, the following three uses of the keyword begin are equivalent:

BEGIN
begin
Begin

However, the following two character strings are not equivalent:

'The rain in Spain';
'THE RAIN IN SPAIN';

NOTE: At SRI0, Domain/OS is case-sensitive for pathnames. Be sure
that strings containing pathnames store the pathnames in the cor­
rect case.

2.1. 7 Spreading Source Code Across Multiple Lines

In Pascal, you can start a statement or declaration at any column and spread it over as
many lines as you want. However, note that you cannot split a token (keyword, identifier,
or string) across a line. For example, consider the writeln statement which can take char­
acter strings as an argument. The following use of writeln is wrong because it splits the
string across a line:

WRITELN('This is an uninteresting
long string');

2-6 Blueprint 0/ a Program

Instead, the line should appear this way:

WRITELN('This is an uninteresting long string');

You can also break the string into two strings and separate them by a comma:

WRITELN('This is an uninteresting'
" long string');

This works because the writeln procedure takes more than one argument.

NOTE: By default, any text file you open for reading can have a maxi­
mum of 256 characters per line. You can specify an optional
buffer size when you open the file, however, to change that de­
fault.

2.2 Organization

You can write a Domain Pascal program in one file or across several files. This section ex­
plains the proper structure for a program that fits into one file. Chapter 7 details the struc­
ture for a program that is spread over several files.

A Domain Pascal program takes the format shown in Figure 2-1. Note that routines are
themselves declarations.

Blueprint of a Program 2-7

,.""" Label declaration part ~ - --
Const declaration part

~,
Type declaration part

Var declaration part

Define declaration part

Attribute declaration part

program heading

~

declarations -
routines ,.", - routine heading
Begin

declarations -action
nested routines

End.
Begin

action

End;

Figure 2-1. Format of Main Program in Domain Pascal

Figure 2-2 is a labeled program designed to help you understand the structure of a
Domain Pascal program. The following subsections detail the parts of a program.

2-8 Blueprint of a Program

~,

PROGRAM labeled; {program heading}

{start of the declaration part of the main program. }
{These declarations will be global to the entire program.}

LABEL {LABEL declaration part}
finish;

CONST {CONST declaration part}
axiom 'Clarity is wonderful!';

TYPE {TYPE declaration part}
flavors (mint, lime, orange, beige);

VAR {VAR declaration part}
x, y, z : integer;
ice_cream: flavors;

{End of the declaration part of the main program.}

{Start of the roots procedure.}
Procedure roots; {routine heading}

. {Start
{These

VAR
q

{End of

of the declaration part of roots.}
declarations will be local to roots.}

{VAR declaration part}
: real;
the declaration part of roots.}

BEGIN {Start of the action part of roots.}
write('Enter a number - '); readln(q);
writeln('The square root of ',q, ' is ',sqrt(q»;

END; {End of the action part of roots.}
{End of the roots procedure.}

BEGIN {Start of the action part of the main program.}
writeln(axiom);
x := 5; y:= 7; z:= x + 5;
if z > 100 then goto finish;
for ice_cream := mint to beige do

writeln(ice_cream);
roots;

finish:
END. {End of the action part of the main program.}

Figure 2-2. Labeled Main Program

Blueprint of a Program 2-9

I

I

2.2.1 Program Heading

Your program must contain a program heading. The program heading has the following
format:

In Domain Pascal, as in standard Pascal, you must supply a name for the program. Name
must be an identifier. This identifier has no meaning within the program, but is used by
the binder, the librarian, and the loader. (See the Domain/OS Programming Environment
Reference manual for details on these utilities for Aegis. For the UNIX utilities Id and ar,
refer to the SysV Command Reference and the BSD Command Reference.)

In standard Pascal you can supply an optional file _list to the program heading. The
file_list specifies the external files (including standard input and output) that you are going
to access from the program. However, unlike standard Pascal, the file_list in a Domain
Pascal program has no effect on program execution; the compiler ignores it. (For details
on 110, see Chapter 8.)

Code_section_name and data_section_name are optional elements of the program heading.
Use them to specify the names of the sections in which you want the compiler to store
your code and data. A section is a named contiguous area of memory in which all entities
share the same attributes. (See the Domain/OS Programming Environment Reference for
details on sections and attributes.) By default, Domain Pascal assigns all the code in your
program to the . text section and all the data in your program to the . data section. To as­
sign your code and data to nondefault sections, specify a code_section_name and a
data _section _name.

NOTE: In addition to nondefault code and data section names for the
entire program, you can also specify a nondefault section name
for a procedure, a function, or a group of variables. See the" Sec­
tion" section of Chapter 5 for an explanation of how to assign
section names to procedures and functions, and see the" Putting
Variables into Sections" section of Chapter 3 to learn how to
assign section names to groups of variables.

To specify the default .text section together with an alternate .data section, use the follow­
ing syntax:

program name [(file_list)], , data_section_name;

2-10 Blueprint of a Program

Let's now consider some sample program headings. Despite the options available, most Do­
main Pascal program headings can look as simple as the following:

Program trapezoids;

Those of you desiring to write standard Pascal programs will also probably want to supply a
file _list as in the next example:

Program trapezoids (input, output, datafile);

Finally, those of you wanting to capitalize on certain run-time features may wish to define
your own section names. For example, if you want the compiler to store the code into sec­
tion mycode and the data into section mydata, you would issue the following program
heading:

Program trapezoids, mycode, mydata;

2.2.2 Declarations

The declarations part of a program is optional. It can consist of zero or more label decla­
ration parts, const declaration parts, type declaration parts, var declaration parts, define
declaration parts, and attribute declaration parts. Domain Pascal allows you to specify
these parts in any order.

2.2.2.1 Label Declaration Part

You define labels in the label declaration part. A label has only one purpose-to act as a
target for a goto statement. (See Chapter 4 for a description of the goto statement.) In
other words, the statement

GOTO 40;

works only if you have defined 40 as a label.

The format for a label declaration part is

label

labell [, ... labelN l
A label is either an identifier or an unsigned integer. If there are multiple labels, you must
separate them with commas. Remember, though, to put a semicolon after the final label.

For example, the following is a sample label declaration:

LABEL
40, reprompt, finish, 9999;

Blueprint of a Program 2-11

2.2.2.2 Const Declaration Part

You define constants in the const declaration part. A constant is a synonym for a value
that will not (and cannot) change during the execution of the program.

The const declaration part takes the following syntax:

const
identifier} = value};

[

identifierN = valueN;]

An identifier is any valid Domain Pascal identifier. A value must be a real, integer, string,
char, or set constant expression. Value can also be the pointer expression nil.

For example, here is a sample const declaration part:

CONST
pi = 3.14;
cup = 8;
key = 'Y';
blank = ' ';
words = 'To be or not to be';
v owe 1 s = [' a', ' e', ' i', ' 0', ' u '] ;
ptr1 = nil;

{A real number}
{An integer}

{A character}
{A character}

{A string}
{A set}

{A pointer}

The preceding sample involves simple expressions; however, you can also specify a more
complex expression for value. Such an expression can contain the following types of terms:

• A real number, an integer, a character, a string, a set, a Boolean, or nil

• A constant that has already been defined in the const declaration part (note that
you cannot use a variable here)

• Any predefined Domain Pascal function (for example, chr, sqr, Ishft, sizeof, but
only if the argument to the function is a constant)

• A type transfer function

You can optionally separate these terms with any of the operators shown in Table 2-1.

2-12 Blueprint of a Program

Table 2-1. Domain Pascal Mathematical Operators

Operator Data Type of Operand

+, -, * Integer, real, or set

/ Real

mod, div, I, &, - Integer

** Exponentiation

Chapter 4 describes these operators.

For example, the following const declaration part defines eight constants:

CONST
x 10;
y 100;
z x + y;
current_year
leap_offset
bell
pathname
pathname_len

1994;
(current_year mod 4);
chr (7) ;

'jjetjgo_home';
sizeof(pathname);

2.2.2.3 Type Declaration Part

Chapter 3 details the many predeclared data types Domain Pascal supports. In addition to
these Pascal-defined data types, you can create your own data types in the type declara­
tion part. After creating your own data type, you can then declare variables (in the var
declaration part) that have these data types. The format for a type part is as follows:

type
identifier 1 = typename 1 :

[

identifierN = typenameN:]

An identifier is any valid Domain Pascal identifier. A typename is any predeclared Domain
Pascal data type (like integer or real), any data type that you create, or the identifier of a
data type that you created earlier in the type declaration part.

Blueprint of a Program 2-13

For example, here is a sample type declaration part:

type
long = integer32; {A predeclared Domain Pascal data type}
student_name = array[l .. 20] of long; {A user-defined data type}
colors = (magenta, beige, mauve); {A user-defined data type}
hue = set of colors; {A user-defined data type}
table = array [magenta .. mauve] of real; {A user-defined data type}

2.2.2.4 Var Declaration Part

Declare variables in the var declaration part. A variable has two components - a name
and a data type. The format for the var declaration part is:

var
identifier _list 1 : typename 1 ;

[
identifier _listN : typenameN;]

An identifier _list consists of one or more identifiers separated by commas. Each identifier
in the identifier _list is assigned the data type of typename. Typename must be one of
these:

• A predeclared Domain Pascal data type

• A data type you declared in the type declaration part

• An anonymous data type (that is, a data type you define for the variables in this
identifier _list only)

2-14 Blueprint of a Program

For example, consider the following type declaration part and var declaration part:

type

var

names = array[1 .. 20] of char;
colors = (red, yellow, blue);

counter, x, y: integer;

angles:real;
a_letter: char;

{integer is
{real is
{char is

couch_colors: colors;
evil;boolean; {boolean is
mystery_guest:names;
seniors:67 .. 140;
pet: (cat, dog);

a predeclared Domain Pascal data
a predeclared Domain Pascal data
a predeclared Domain Pascal data

{colors is defined in the type
a predeclared Domain Pascal data

{names is defined in the type
{An anonymous subrange data

{An anonymous enumerated data

type.}
type.}
type.}
part.}
type.}
part.}
type.}
type.}

In the preceding example, note that counter, x, and yare three variables that have the
same data type (integer).

2.2.2.5 Define Declaration Part-Extension

In addition to the const, type, var, and label declaration parts of standard Pascal, Do­
main Pascal also supports an optional define declaration part, which is described in the
first three sections of Chapter 7.

2.2.2.6 Attribute Declaration Part-Extension

Domain Pascal supports an optional attribute declaration part, which is described in the
"Attribute Declaration Part" section of Chapter 3.

~.2.3 Routines

A program can contain zero or more routines. There are two types of routines in Domain
Pascal: procedures and functions. A routine consists of three parts: a routine heading, an
optional declaration part, and an action part.

Blueprint of a Program 2-15

2.2.3.1 Routine Heading

Routine headings take the following format:

[attribute_list] procedure name [(parameter _list)] ; [routine_options;]

or

[attribute_list] function name [(Parameter _list)] : typename; [routine_options;]

where:

• attribute _list is optional. Inside the attribute _list, you can specify nondefault sec­
tion names for the routine's code and data. For a description, see Chapter 5.

• name is an identifier. You call the routine by this name.

• parameter _list is optional. It is here that you deClare the names and data types of
all the parameters that the routine expects from the caller. See Chapter 5 for de­
tails on the parameter _list.

• typename is the data type of the value that the function returns. The difference
between a procedure and a function is that the name of a procedure is simply a
name, but the name of a function is itself a variable with its own typename. You
must assign a value to this variable at some point within the action part of the
function. (It is an error if you don't.) You cannot assign a value to the name of a
procedure. (It is an error if you do.)

• routine_options is an optional element of the routine heading. You can specify
characteristics of the routine such as whether or not it can be called from another
routine. Chapter 5 describes the routine_options.

2.2.3.2 Declaration Part of a Routine

The optional declaration part of a routine follows the same rules (with one exception) as
the optional declaration part under the program heading. The constants, data types, vari­
ables, and labels are local to the routine declaring them and to any routines nested within
them. (See the "Global and Local Variables" and "Nested Routines" sections at the end
of this chapter for details.)

One difference between the declaration part of a routine and the declaration part of the
main program is that the declaration part of a routine cannot contain a define declaration
part. Another difference is that you cannot initialize non-static variables in a routine,
though you can initialize them in the main program.

2-16 Blueprint of a Program

2.2.3.3 Nested Routines

You can optionally nest one or more routines within a routine. See the "Nested Routines"
section at the end of this chapter for details.

2.2.3.4 Action Part of a Routine

The action part of a routine starts with the keyword begin and finishes with the keyword
end. Between begin and end you supply one or more Domain Pascal statements. (See
Chapter 4 for a description of Domain Pascal statements.) You must place a semicolon
after the final end in a routine.

For example, consider the following sample action part of a routine:

BEGIN
x := x * 100;
writeln(x);

END;

2.2.4 Action Part of the Main Program

The action part of the main program is almost identical to the action part of a routine.
Both start with begin, both finish with end, and both contain Domain Pascal statements in
between. The only difference is that you must place a period (rather than a semicolon)
after the final end in the main program. For example, consider the following sample action
part of the main program:

BEGIN
x := x * 100;
writeln(x);

END.

2.3 Global and Local Variables

The declarations in the declaration part of the main program are global to the entire pro­
gram. The declarations in the declaration part of a routine are local to that routine (assum­
ing no nesting). For example, consider the following program. In it, variable g is global
and variable I is local to procedure addl00.

Blueprint oj a Program 2-17

Program scope;
VAR

g : integer16;

Procedure add100;
VAR

1: integer16;
BEGIN

1 := g + 100;
{Variable I is accessible within this procedure only,}
{while g is global and so is accessible anywhere. }

END;

BEGIN
g := 10;
add100;

{variable g is accessible because it is global. }
{Call the procedure. }

{Variable I is not accessible here because it is}
{local to procedure add100. }

END.

What happens when you specify a local variable with the same name as a global variable?
To answer this question, see Figure 2-3 for two more programs. In the program on the
left (global_example), x is declared as a global variable. In the program on the right (lo­
cal_example), x is declared twice. The first declaration specifies x as a global variable.
The second declaration declares x as local to procedure convert.

Program global_example;

VAR {global declarations}
x : integer16;

PROCEDURE convert;

BEGIN
x := -10;
writeln('In convert, x=',x:1);

END;

BEGIN {main}
x := +10;
convert;
writeln('In main, x=',x:1);

END.

Program local_example;

VAR {global declarations}
x : integer16;

PROCEDURE convert;
VAR {local declarations}

x : integer16;
BEGIN

x := -10;
writeln('In convert, x=',x:1);

END;

BEGIN {main}
x := +10;
convert;
writeln(In main, x=', x:1);

END.

Figure 2-3. Global Variables Example

2-18 Blueprint of a Program

If you execute the programs in Figure 2-3, you get the following results:

Execution of global_example
In convert, X= -10
In main, X= -10

Execution of local_example
In convert, X= -10
In main, X= 10

In program local_example, within procedure convert, the declaration of the local variable
x overrides the global declaration of x. Within convert, the fact that the local variable and
the global variable have the same name (x) prevents procedure convert from accessing the
global variable x at all.

Both programs are available online and are named global_example and local_example.

2.4 Nested Routines

A nested routine is a routine that is declared inside another routine. A nested routine can
access any declared object (label, constant, type, or variable) in a routine outside it, pro­
vided that the object is not hidden by a local declaration. The reverse is not true; that is,
a routine cannot access an object in a routine nested inside it. Thus, the purpose of nest­
ing routines is to create a hierarchy of access. You might view declared objects in the fol­
lowing way:

• Global to the entire program.

• Local to a single routine.

• Local to the routine it is defined in and to all routines nested within it (that is,
neither truly local nor truly global). This is termed an "intermediate level" object.

Note that the main program is itself a routine, and that all routines are nested at least one
level inside it. A routine can call any routine nested one level inside it, but cannot explic­
itly call any routine nested two or more levels inside it. A routine can also call any routine
at its level or outside it, though a routine cannot explicitly call the main program.

For example, consider the program in Figure 2-4. Procedure one is nested inside the main
program. Procedures two a and twob are both nested inside procedure one. The most­
nested procedures (twoa and twob) can access the most variables. The least-nested proce­
dure (the main program) can access the least number of variables.

Blueprint of a Program 2-19

Program nesting_example;

VAR
g : integer16;

procedure one;
VAR

1 : integer16;

procedure twoa;
VAR

n1 : integer16;
BEGIN {twoa}
{can access g, 1, and n1.}

n1 := 1 + g + 500;
END; {twoa}

procedure twob;
VAR

n2 : integer16;
BEGIN {twob}
{can access g, 1, and n2.}

n2 := 1 + g + 1000;
END; {twob}

BEGIN {one}
{can access g and I.}

1 := g + 10;
twob;

END; {one}

BEGIN {main program}
{can only access g.}

g := 1;
g := g * 2;
one;

END. {main program}

2-20 Blueprint of a Program

Figure 2-4. Nesting Example

Note that the main program can call procedure one, but cannot call procedure two a or
twob (since they are nested two levels inside it). Procedure one can call procedure two a
or twob. Procedure twob can call procedure twoa or one. In Pascal, you cannot make a
forward reference to a routine unless you declare the routine with the forward option (de­
scribed in Chapter 5). If you used forward in this example, procedure twoa could call
twob or one.

----88----

Blueprint of a Program 2-21

Chapter 3

Data Types

This chapter explains Domain Pascal data objects. It tells you how to declare variables us­
ing the predeclared Domain Pascal data types and how to define your own data types. The
chapter also shows how Domain Pascal represents each data type internally. Finally, the
chapter describes attributes for variables and types and an attribute declaration part. You
can use these attributes to define characteristics in addition to the data type.

3.1 Data Type Overview

Domain Pascal supports data types that can be sorted into three groups-the simple, struc­
tured, and pointer data types. Furthermore, Domain Pascal provides extensions to the
standard in each category of data type. In this section, we list all the Domain Pascal data
types according to category.

The following list shows the simple data types:

• Integers-Domain Pascal supports the three predeclared integer data types integer,
integer16, and integer32.

• Real numbers-Domain Pascal supports the three predeclared real number data
types real, single, and double.

• Boolean-Domain Pascal supports the predeclared data type boolean.

• Character-Domain Pascal supports the predeclared char data type.

• Enumerated-Domain Pascal supports enumerated data types.

• Subrange-Domain Pascal supports a subrange of scalar data types. The scalar
data types are integer, Boolean, character (char), and enumerated.

Data Types 3-1

You can use the simple data types to build the following structured data types:

• Sets-Domain Pascal permits you to create a set of elements of a scalar data type.

• Records-Domain Pascal supports the record, aligned record, unaligned record,
and packed record data types.

• Array-Domain Pascal supports the array and packed array data types. It also
supports a predeclared character array type called string, and variable-length ar­
ray type declared with the varying keyword.

• Files-Domain Pascal supports the file and text data types.

You can declare any of three kinds of pointer data types:

• Type-specific pointer-points to any previously defined data type.

• Universal pointer-Domain Pascal supports univ_ptr, a predeclared pointer data
type that is compatible with any pointer type.

• Procedure and function pointers-Domain Pascal supports a special data type that
points to procedures and functions.

The program shown in Figure 3-1 contains sample declarations of the above data types.
This program is available online and is named sample_types.

3-2 Data Types

PROGRAM sample_types;
TYPE

real_pointer
writers
element

VAR
i1
i2
i3
r1
r2
r3
consequences
onec
teenage_years
good_writers
tw
e
cat_nums

"'real;
(Amy, Phil, Janice);

{This
{This
{This record

atomic_number
atomic_weight
half life
end;

INTEGER;
INTEGER16;
INTEGER32;
REAL;

SINGLE;
DOUBLE;
BOOLEAN;
CHAR;

INTEGER16;
SINGLE;
DOUBLE;

is a pointer type. }
is an enumerated type.}
is a record type. }

13 .. 19; {teenage_years is a subrange variable.}
writers; {good_writers is an enumerated variable.}
SET OF writers; {tw is a set variable.}
element; {e is a record variable.}
array[l .. 5] of INTEGER16;

{cat~nums is an array variable.}
STRING;
{a_sentence is an array variable of 80 characters.}

hamlets_soliloquy: TEXT; {hamlets_soliloquy is a text file variable.}
periodic_table FILE OF element;

pp

real_pointer;
UNIV_PTR;

{periodic_table is a file variable.}
{rl_ptr is a pointer variable.}

{Any_ptr is a universal pointer variable.}
"'PROCEDURE (IN x : INTEGER);

{pp is a pointer to a procedure variable.}
BEGIN

writeln('Greetings.');
END.

Figure 3-1. Program Declaring All Available Data Types

3.2 Integers

This section explains how to declare variables as integers, how to initialize integer variables,
and how to define integer constants. It also explains how Domain Pascal represents integers
internally.

Data Types 3-3

3.2.1 Declaring Integer Variables

Domain Pascal supports the following predeclared integer data types:

• Integer-Use it to declare a signed 16-bit integer. A signed 16-bit integer variable
can have any value from -32768 to +32767.

• Integer16-Use it to declare a signed 16-bit integer. (Integer and integer16 have
identical meanings.)

• Integer32-Use it to declare a signed 32-bit integer. A signed 32-bit integer vari­
able can be any value from -2147483648 to +2147483647.

For example, consider the following integer declarations:

VAR
x, y, z : INTEGER;
quarts : INTEGER16;
social_security_number : INTEGER32;

If you want to define unsigned integers, you must use a subrange declaration. (Refer to the
"Subrange" section later in this chapter.)

3.2.2 Initializing Integer Variables-Extension

Domain Pascal permits you to initialize the values of integers within the variable declaration
in most cases. You initialize a variable by placing a colon and equal sign (:=) immediately
after the data type. For example, the following excerpt initializes X and Y to 0, and Z to
7000000:

VAR
X,Y INTEGER16.- 0;
Z INTEGER32 .- 7000000;

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions.

For example, the following is incorrect:

FUNCTION do_nothing(IN OUT x : INTEGER) : BOOLEAN;
VAR

init_value : INTEGER := 0; {wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

init value: STATIC INTEGER := 0; {Right!}

3-4 Data Types

See the" Accessing a Variable Stored in Another Pascal Module" section of Chapter 7 for
more information on the static attribute.

3.2.3 Denning Integer Constants

When you declare an integer constant, Domain Pascal internally represents the value as a
32-bit integer. For example, in the following declarations, Domain Pascal represents both
poco and grande as 32-bit integers.

CONST
poco 6;
grande = 6000000;

You can specify an integer constant anywhere in the range -2147483648 to +2147483647.

It is also possible to compose constant integers as a mathematical expression. (Refer to the
"Const Declaration Part" section in Chapter 2 for details.)

The predeclared integer constant maxint has the value +32767.

3.2.4 Internal Representation of Integers

Domain Pascal represents a 16-bit integer (types integer and integer16) as two contiguous
bytes, as shown in Figure 3-2. Bit 15 contains the most significant bit (MSB), and bit 0
contains the least significant bit (LSB). If the integer is signed, bit 15 contains the sign bit.

15 (MSB) 0 (LSB)
1--------B~-e--O--------------B-~-e--1-------1

Figure 3-2. 16-Bit Integer Format

Domain Pascal represents a 32-bit integer (type integer32) in four contiguous bytes as il­
lustrated in Figure 3-3. The most significant bit in the integer is bit 31; the least significant
bit is bit O. If the integer is signed, bit 31 contains the sign bit.

31 (MSB) 16

B~e 0 B~e 1

B~e 2 B~e 3

15 o (LSB)

Figure 3-3. 32-Bit Integer Format

By default, Domain Pascal aligns freestanding 16-bit integers on word boundaries and
32-bit integers on longword boundaries. (See the "Internal Representation of Records"
section of this chapter for details about alignment for integers that are part of records.)

Data Types 3-5

3.3 Real Numbers

This section describes how to declare variables as real numbers, how to define real num­
bers as constants, and how Domain Pascal represents real numbers internally.

3.3.1 Declaring Real Variables

Domain Pascal supports the following real data types:

• Real-Use it to declare a signed single-precision real variable. Domain Pascal rep­
resents a single-precision real number in 32 bits. A single-precision real variable
has approximately seven significant digits.

• Single-Same as real.

• Double-Use it to declare a signed double-precision real variable. Domain Pascal
represents a double-precision real number in 64 bits. A double-precision real vari­
able has approximately 16 significant digits.

For example, consider the following declarations:

VAR
1, m, n : REAL;
winning_time : SINGLE;
cpu_time : DOUBLE;

3.3.2 Initializing Real Variables-Extension

Domain Pascal permits you to initialize the values of real numbers within the variable dec­
laration in most cases. You initialize a value by placing a colon and equal sign (:=) imme­
diately after the data type. For example, the following excerpt initializes variable pi to
3.14:

VAR
pi : SINGLE := 3.14;

If you declare a variable as single or real, and if you attempt to initialize it to a number
with more than seven significant digits, then Domain Pascal rounds (it does not truncate)
the number to the first seven significant digits.

For example, if you try to initialize pi this way:

VAR
pi : SINGLE := 3.1415926535;

Domain Pascal rounds pi to 3.141593.

3-6 Data Types

As with integers, if the variable declaration occurs within a procedure or function, you can
initialize the variable at the declaration only if it has been declared static. This is because
storage within routines is dynamic and so variables in them do not necessarily retain their
values between executions. For example, the following is incorrect:

FUNCTION do_nothing(IN OUT x : REAL) : BOOLEAN;
VAR

init_value : REAL := 0.0; {Wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

init_value : STATIC REAL := 0.0; {Right!}

See the" Accessing a Variable Stored in Another Pascal Module" section of Chapter 7 for
more specific information on the static attribute.

3.3.3 Denning Real Constants

When you use a real number as a constant, Domain Pascal automatically defines the con­
stant as a double-precision real number. This is true even if the constant can be accurately
represented as a single-precision real number. However, when you use a real constant in a
mathematical operation with a single-precision number, Domain Pascal automatically
rounds the constant to a single-precision number to produce a more accurate result. The
following fragment defines four valid (and one invalid) real constants:

CONST
N
N2
G
X

24.57; { Valid real number.
2E19; { Valid, symbolizes 2.0 * (1019)

6.67E-ll; { Valid, symbolizes 6.67 * (10-11)

.5; { Not a valid real literal because it does
{ not contain a digit to the left of the

}
}
}
}
}

X2 = 0.5;
{ decimal point. }

{Valid real literal.}

3.3.4 Internal Representation of Real Numbers

Single-precision floating-point numbers (types real and single) occupy four contiguous
bytes of a longword, as shown in Figure 3-4. Domain Pascal uses the IEEE standard for­
mat for representing 32-bit real values. Bit 31 is the sign bit with "1" denoting a negative
number. If the value is normalized, the next eight bits contain the exponent plus 127, and
the remaining 23 bits contain the mantissa of the number without the leading 1. (Domain
Pascal stores the mantissa in magnitude form, not in two's-complement.)

Data Types 3-7

31 30 22 16

$ I Exponent + 127 1 Mantissa

Mantissa (cont.)

15 o

Figure 3-4. Single-Precision Floating-Point Format

For example, Pascal represents +100.5 in the following manner:

0100001011001001
0000000000000000

The number breaks into sign, exponent, and mantissa as follows:

sign
exponent
significant part of mantissa

o (positive)
10000101 (133 in decimal)
1001001

The exponent is 133; 133 is equal to 127 plus 6. Therefore, you can view the mantissa bits
as follows:

bit 22 represents 2 to the fifth power
bit 21 represents 2 to the fourth power
bit 20 represents 2 to the third power

bit 16 represents 2 to the negative first power.

You get 100.5 by adding (26 + 25 + 22 + 2_1). (The implicit leading 1 of the mantissa
corresponds to 26 .)

A number with a negative exponent is stored differently. Pascal represents 5E-2 (+0.05)
as follows:

0011110101001100
1100110011001101

The number breaks into sign, exponent, and mantissa as follows:

sign
exponent
significant part of mantissa

3-8 Data Types

o (positive)
01111010 (122 in decimal)
10011001100110011001101

The exponent is 122; 122 is equal to 127 plus -5. Therefore, you can view the mantissa
bits as follows:

bit 22 represents 2 to the -6 power
bit 21 represents 2 to the -7 power
bit 20 represents 2 to the -8 power

bit 0 represents 2 to the -29 power

You get 5E-2 by adding 2_5 + 2_6 + 2_9 and so on.

Domain Pascal represents double-precision floating-point numbers (type double) in eight
bytes of a longword (64 bits). Figure 3-5 illustrates the format. The first bit (bit 63) con­
tains the sign bit. If the value is normalized, the next 11 bits contain the exponent plus
1023. The remaining 52 bits hold the mantissa, without the leading 1.

63 62 51 48

$ I Exponent + 1 023 I Mantissa

Mantissa (cont.)

Mantissa (cont.)

Mantissa (cont.)

15 o

Figure 3-5. Double-Precision Floating-Point Format

By default, Domain Pascal stores single-precision floating-point numbers (types real and
single) on longword boundaries. It stores double-precision floating-point numbers (type
double) on quadword boundaries. (See the "Internal Representation of Records" section
of this chapter for details about alignment for real numbers that are part of records.)

For complete information about floating-point formats, see the Domain Floating-Point
Guide.

3.4 Unsigned Types

Although Domain Pascal does not have a true unsigned data type, it does offer unsigned
ranges. Through the use of large unsigned subranges (from 0 .. 230 up to 00 .. 231_1), you
can achieve much of the effect of having true unsigned types.

Data Types 3-9

The following code fragment illustrates the simulation of unsigned types through the use of
unsigned subranges:

TYPE

VAR

signed_32
unsigned_32

-2147483648 .. 2147483647;
o .. 2147483647;

s32
u32

signed_32;
unsigned_32;

{ Signed 32-bit integer. }
{ Unsigned 31-bit integer. Not

exactly the full 32 bits, but
enough to convince the compiler
that u32 is much like an unsigned
32-bit integer. }

NOTE: The true full range of unsigned 32-bit integers cannot be ex­
pressed because constants larger than 2147483647 are not valid.
You cannot get around this restriction by using constants with an
explicit base with the signed bit set because the compiler treats
them as negative numbers (for example, 16#FFFFFFFF).

When you have an unsigned subrange that is large enough to re­
quire 31 bits, the compiler allocates 32 bits.

3.5 Booleans

A Boolean variable can have only one of two values-true or false. This section describes
how you declare Boolean variables. how you define Boolean constants. and how Domain
Pascal represents Boolean variables internally.

3.5.1 Initializing Boolean Variables-Extension

Domain Pascal permits you to initialize the values of Boolean variables within the variable
declaration in most cases. You initialize a value by placing a colon and equal sign (:=) im­
mediately after the data type. For example. the following excerpt declares liar to be a
Boolean variable with an initial value of false:

VAR
liar : boolean := false;

If the variable declaration occurs within a procedure or function. you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions. For example, the following is incorrect:

FUNCTION do_nothing(IN OUT x INTEGER) : BOOLEAN;
VAR

liar : BOOLEAN := false; {Wrong!}

3-10 Data Types

This is the correct way to initialize the variable at its declaration in a routine:

liar : STATIC BOOLEAN := false; {Right!}

See Chapter 7 for information on the static attribute.

3.5.2 DefIning Boolean Constants

To define a Boolean constant, simply write the name of the constant, followed by an equal
sign, and concluding with either true or false. For instance, the following excerpt defines
constant virtue and sets it to true:

CONST
virtue = true;

Notice that you do not enclose true or false inside a pair of apostrophes.

3.5.3 Internal Representation of Boolean Variables

Domain Pascal represents Boolean values in one byte. The system sets all eight bits to 1
for true and sets all eight bits to 0 for false. By default, Domain Pascal stores freestanding
Boolean objects on byte boundaries. However, a Boolean field in a packed record will
have a different allocation (see the "Internal Representation of Packed Records" section
later in this chapter for details).

3.6 Characters

This section describes how you declare a variable as a character data type, how you define
characters as constants, and how Domain Pascal represents characters internally.

3.6.1 Declaring Character Variables

Use the char type to declare a variable that holds one character; for example:

VAR

To declare a variable that holds more than one character you must use an array or the
predefined type string (both of which are detailed in the" Arrays" section later in this
chapter).

Data Types 3-11

3.6.2 Initializing Character Variables-Extension

Domain Pascal permits you to initialize the values of character variables within the variable
declaration in most cases. You initialize a value by placing a colon and equal sign (:=) im­
mediately after the data type. For example, the following excerpts each declare cl as a
char variable with an initial value of a:

VAR
c1 CHAR.- 'a'; {you must enclose the character in single quotes}

VAR
c1 : CHAR := chr (65);

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions.

For example, the following is incorrect:

FUNCTION do_nothing (IN OUT x
VAR

best_grade: CHAR := 'A';

INTEGER) BOOLEAN;

{wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

best_grade: STATIC CHAR := 'A'; {Right!}

See the" Accessing a Variable Stored in Another Pascal Module" and" Accessing a Rou­
tine Stored in Another Pascal Module" sections of Chapter 7 for· more information on the
static attribute.

3.6.3 Denning Character Constants

There are two common methods of assigning character constants. The first is to simply en­
close a character inside a pair of single quotes. For example:

CONST
c1 = 'b';

This first method works only if the character is printable, but the second method works for
all ISO Latin-l characters (printable or not). The second method uses the chr function
(which is detailed in Chapter 4). As an example, suppose you want constant bell to con­
tain the bell ringing character. The bell ringing character has an ISO Latin-l value of 7, so
to assign this value to constant bell you can make the following declaration:

CONST
bell CHR(7) ;

3-12 Data Types

3.6.4 Internal Representation of Char Variables

Domain Pascal stores the ISO Latin-1 value of a char variable in one 8-bit byte. By de­
fault, freestanding char variables are byte aligned.

3.7 Enumerated Data

An enumerated data type consists of an ordered group of identifiers. The only value you
can assign to an enumerated variable is one of the identifiers from its group of identifiers.
Here are declarations for four enumerated variables:

VAR
citrus (lemon, lime, orange, carambola, grapefruit);
primary_colors (red, yellow, blue);
Beatles (John, Paul, George, Ringo);
German_speaking_countries : (Germany, Switzerland, Austria);

In the code portion of your program, you can only assign the values red, yellow, or blue
to variable primary_colors.

Notice that the elements of an enumerated type must be identifiers. Identifiers cannot be­
gin with a digit, so, for example, the following declaration produces an "Improper enumer­
ated constant syntax" error:

VAR
first_six_primes : (2, 3, 5, 7, 11, 13); {error}

3.7.1 Internal Representation of Enumerated Variables

Domain Pascal represents an enumerated variable in one 16-bit word. In this word, Do­
main Pascal stores an integer corresponding to the ordinal position of the current value of
the enumerated variable. For example, consider the following declaration:

VAR
pets: (cats, dogs, dolphins, gorillas, pythons);

Pets has five elements; Domain Pascal represents those five elements as integers from 0 to
4 as shown in Table 3-1.

Data Types 3-13

Table 3-1. Representation of an Enumerated Variable

Variable Representation

pets :== cats 0000000000000000

pets .- dogs 0000000000000001

pets := dolphins 0000000000000010

pets .- gorillas 0000000000000011

pets := pythons 0000000000000100

3.8 Subrange Data

A variable with the subrange type has a valid range of values that is a subset of the range
of another type called the base type. When you define a subrange, you specify the lowest
and highest possible value of the base type. You can specify a subrange of integers, charac­
ters, or any previously defined enumerated type. The following fragment declares four dif­
ferent subrange variables:

TYPE
mountains = (Wachusett, Greylock,

Washington, Blanc, Everest); {Mountains is an enumerated type.}

VAR {The following four variables
teenage_years 13 .. 19;
positive_integers
capital_letters
small_mountains

1 .. MAXINT;
, A' .. ' Z' ;

Wachusett .. Washington;

all have subrange types.}
{Subrange of INTEGER.}
{Subrange of INTEGER.}

{Subrange of CHAR.}
{Subrange of MOUNTAINS.}

Currently, Domain Pascal does not support subrange checking. For example, if you try to
assign the value 25 to teenage_years, Domain Pascal does not report an error. However,
you can use the in_range function to determine whether 25 is within the declared sub­
range. (See the "In_range" section of Chapter 4 for information on the in_range func­
tion.)

3.8.1 Internal Representation of Subranges

The storage allocation for subrange variables is the same as that for their base types. How­
ever, a subrange field in a packed record will have a different allocation. (See the "Inter­
nal Representation of Packed Records" section later in this chapter for details.)

3-14 Data Types

3.9 Sets

A set in Domain Pascal is similar to a set in standard mathematics. For instance, Domain
Pascal can compute unions and intersections of Domain Pascal set variables just as you can
find unions and intersections of two mathematical sets. Refer to the "Set Operations" list­
ing in Chapter 4 for information on using sets in the action part of your program.

3.9.1 Declaring Set Variables

The format for specifying a set variable is as follows:

set of boolean I char I enumerated_type I subrange_type

For example, consider the following set declarations:

TYPE
very
lowints

(ochen, sehr, tres, muy);
O .. 100;

VAR
ASCII_values : set of char;
possibilities : set of boolean;
capital_letters: set of 'A' .. 'Z';
lots : set of very;
digits : set of lowints;

{Char is base type.}
{Boolean is base type.}
{Subrange of CHAR is base type.}
{Enumerated type is base type.}
{lowints is base type.}

If the base type is a subrange of integers, then the low end of the subrange cannot be a
negative number. Also, the high end of the subrange cannot exceed 1023.

NOTE: Although Domain Pascal lets you declare packed set variables or
packed set types, the compiler ignores the designation. (That is,
the packed designation does not affect the amount of memory
the compiler uses to represent the set.) See Section 3.9.3 for
further information about the ihtefililrrepresentation of sets and a
description of a technique for the packing of small sets.

3.9.2 Initializing Set Variables-Extension

In most cases, you can initialize set variables with an assignment statement in the variable
declaration. For example, consider the following set variable initializations:

TYPE
unstable_elements (U, PI, Ei, Ra, Xe);

VAR
letters: set of CHAR := ['A', 'E', 'I', '0', 'U'];
humanmade_elements : set of unstable elements .- [PI, Ei];

Data Types 3-15

•

I

I

I

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions. For example, the following is incorrect:

FUNCTION assign_grades(IN OUT score : INTEGER)
VAR

BOOLEAN;

grades: set of CHAR := ['A', 'B', 'C', 'D', 'E'];

This is the correct way to initialize the variable at its declaration in a routine:

{Wrong!}

grades : STATIC set of CHAR : = ['A', 'B', 'C', 'D', 'E']; {Right! }

See the "Accessing a Variable Stored in Another Pascal Module" and" Accessing a Rou­
tine Stored in Another Pascal Module" sections of Chapter 7 for more information on the
static attribute.

Refer to the "Set Operations" listing in Chapter 4 for more information on set assignment.

3.9.3 Internal Representation of Sets

A set can contain up to 1024 elements; their ordinal values are 0 to 1023. Sets are stored
as bit masks, with one bit representing one element of the set. The number of bits that
Domain Pascal allocates to a set is the number of elements in the set, rounded up to a
multiple of 16 bits. That is, a set occupies the minimum number of words that provides
one bit per element. Consequently, the minimum storage size for a set is one word (16
bits) and the maximum size is 64 words (1024 bits). The one exception to this is small
sets within a packed records. See Section 3.10.7 for a technique that packs small sets
within a packed record.

For example, suppose you define an enumerated type named Greek_letters, with values
Alpha, Beta, Gamma, and so forth, up to Omega. You can then declare a set of
Greek_letters as follows:

VAR
Greek_alphabet : SET of Greek_letters

Greek_alphabet has 24 values, and therefore, Greek_alphabet requires at least 24 bits.
The nearest word boundary is 32 bits, so Domain Pascal allocates 32 bits (2 words) for the
variable. It then stores the values as shown in Figure 3-6:

15 7 o 15 3 2 o

Omega I I Gamma I Beta Alpha I
Word 1 Word 2

Figure 3-6. Storage of Sample Set

3-16 Data Types

If the base type of the set is a subrange of integers or a subrange of char, then the ordinal
value of the high end of the subrange determines the amount of space required to store
the set. For example, consider the following two set declarations:

TYPE

VAR

possible_values
small_letters

80 .. 170;
'a' .. 'z';

pos set of possible_values;
sma set of small_letters;

Domain Pascal stores variable pos in 11 words (176 bits). That is because the highest ordi­
nal value of the base type (possible_values) is 170. The next word boundary up from 170
is 176.

Domain Pascal stores variable sma in eight words (128 bits). In the base type (small_let­
ters), the ordinal value of z is 122. The next word boundary up from 122 is 128.

3.10 Records

A record variable is composed of one or more different components (called fields) which
may have different types. Domain Pascal supports the two standard kinds of records: fixed
records and variant records. The following subsections describe both kinds.

3.10.1 Fixed Records

A fixed record consists of zero or more fields. Each field can have any valid Domain Pas­
cal data type. To declare a fixed record type, issue a declaration of the following format:

type
record_name = record

field1

fieldN
end;

Each field has the following format:

field_name 1 , ... field_nameN : typename;

Data Types 3-17

For example, consider the following three record declarations:

TYPE
student record {Contains two fields.}

name array[1 .. 30] of char;
id INTEGER16;

end;

element

end;

weather

end;

record
name
symbol
atomic_number
atomic_weight

record
station
sky_condition
windspeed
winddirection
pressure

VAR
new_students
noble_gases
w1

student;
element;
weather;

{Contains four fields.}
array[1 .. 15] of char;
array[1 .. 2] of char;
1 .. 120;
real;

{Contains five fields.}
array[1 .. 3] of char;
(fair, ptly_cloudy, cloudy);
1 .. 100;
1 .. 360;
single;

Note that you can declare a record type as the data type of a field. For example, notice
the changes in the declaration of the record weather:

TYPE
wind

end;

weather

end;

3-18 Data Types

record
speed: 1 .. 100;
direction: 1 .. 360;

record
station
sky_condition
gradient
pressure

array[1 .. 3] of char;
(fair, ptly_cloudy, cloudy);
wind;
single;

NOTE: A common mistake is to misuse the equal sign (=) and the
colon (:). When declaring a record in the type declaration part,
put an equal sign between the name of the record and the key­
word 'record. For example:

type
weather = record ...

When declaring a record in the var declaration part, put a colon
between them. For example:

var
wI : weather;

3.10.2 Variant Records

A variant record is a record with multiple data type possibilities. When you declare a vari­
ant record, you specify all the possible data types that the record can have. You also spec­
ify the condition for selecting among the multiple possibilities.

In other words, at run time a fixed record variable has the same group of data types from
one use of the variable to another. However, a variant record variable has a flexible group
of data types from one use of the variable to another.

The variant record has the following format:

type
record_name = record

fixedyart;
variant yart;

end;

The fixedyart of a variant record is optional. It looks just like a fixed record. In other
words, the fixed yart consists of one or more fields each having the following format:

field_name 1 , ... field_nameN : typename;

The variant yart of a variant record takes the following format:

case [tagJield] typename of

constantlist 1: (field; ... jieldN);

constantlistN: (field; ... fieldN);

The constantlist is one or more constants that share the same data type. For instance, if
typename is integer, then every constant in constantlist must be an integer. You associate
one or more fields with each constant list. With one exception, each field has the same
syntax as a field in the fixed part. The one exception is that fieldN can itself be a vari­
antJart.

Data Types 3-19

Note that you can optionally associate a tagJield with the typename. The tagJield is sim­
ply an identifier followed by a colon (:). You can use the tagJield to select the desired
variant at run time. For more information on tagJields, see the "Record Operations" list­
ing in Chapter 4.

Consider the following declaration for variant record type worker. Worker contains a fixed
part and a variant part. The fixed part contains two fields (employee and id_number).
The typename of the variant part is worker_groups, which is an enumerated type. Wo has
two possible values, exempt and non_exempt. When wo is exempt, the field name is
yearly_salary which is an integer32 data type, and when wo is non_exempt, the field
name is hourly_wage which has a real data type.

TYPE
worker_groups = (exempt, non exempt);
worker = record

employee: array[I .. 30] of char;
id_number : integerl6;

CASE wo worker_groups OF

end:

exempt : (yearly_salary
non_exempt : (hourly_wage

{enumerated type}
{record type}

{field in fixed part}
{field in fixed part}

{variant part}
integer32);
real) ;

Consider the following declaration for my_code, a variant record that does not contain a
fixed part. The data type of the variant part is integer, so the case portion declares integer
constants. Choosing 1, 2, 3, and 4 as the constants is totally arbitrary; you could pick any
four integers. These constants serve no purpose except to establish the fact that there are
four choices. The fields themselves provide four different ways to view the same 4-byte
section of main memory.

my_code = record
CASE integer OF

end;

I (all: array[I .. 4] of char);
2 (first_half: array[I .. 2] of char;

second_half: array[I .. 2] of char);
3 (xl integerl6;

x2 : boolean;
x3 : char);

4 (raIl: single);

{variant part}

NOTE: The preceding example shows four parts that take up exactly four
bytes. However, it is perfectly valid to declare parts that take up
differing numbers of bytes.

3-20 Data Types

3.10.3 Unpacked Records and Packed Records

Domain Pascal supports regular (unpacked) records and "packed" records. You declare a
packed record by putting the keyword packed prior to record in the record declaration;
for example:

VAR

student

end;

PACKED record
ages : 10 .. 20 ;
grade: (seventh, eighth, ninth, tenth, eleventh, twelfth);
graduating : boolean;

The advantage to declaring a packed record is that it can save space. The disadvantage is
that you cannot pass a field from a packed record as an argument to a procedure (includ­
ing predeclared procedures like read). The next subsection details the space savings of
packing. Note that you should not directly manipulate fields in a packed record. If you
want to perform some operation that changes the value of an existing field in a packed
record, use the following steps:

1. Assign the value of the field to a variable of the same type.

2. Perform the operation on the variable.

3. Assign the value of the variable to the field of the packed record.

3.10.4 Initializing Data in a Record-Extension

Domain Pascal permits you to initialize a record in the variable declaration portion of the
program unless that declaration comes within a procedure or function and the record has
not been declared static. (See the "Accessing a Variable Stored in Another Pascal Mod­
ule" and" Accessing a Routine Stored in Another Pascal Module" sections of Chapter 7
for more information on the static attribute.) You can initialize some or all of the fields
in a record.

To initialize a field in a record, enter a declaration with the following format:

var
name_ol_record_variable : type_ol_record :=

[in it ,
· ,
· ,
· ,

init];

where init is a statement having one of the following formats:

or

initial_value

Data Types 3-21

If you use the second format, Domain Pascal assumes that the initial_value applies to the
next field_name in the record definition. For example, consider this record initialization:

TYPE

VAR

messy record
rx real;
c : char;
abc: array[1 .. 3] of integer;
case integer of

o (i32: integer32);
1 (i16: integer);
2 (hb, lb : char);

end;

very MESSY:=
[c : = 'X',

[-1, -2, -3],
rx := 123.456,
'Y',
lb := 'a',
hb := 'z'];

The preceding example initializes field c to 'X'. The next declaration [-1, -2, -3] applies
to field abc (because it follows field c). Field rx gets initialized to 123.456. Then, field c
gets reinitialized to 'Y' (because it follows field rx). Finally, the third field in the variant
portion of the record gets initialized, with field Ib getting the value 'a' and field hb getting
set to 'z'.

3.10.5 Internal Representation of Unpacked Records

In order to understand the internal representation of unpacked records, you need to un­
derstand the following concepts:

• Alignment

• Natural alignment

• Guaranteed default alignment

• Default alignment

• Layout of records

• Memory allocation

• Arranging record fields in descending order by size

We describe each of these concepts in the following sections.

3-22 Data Types

3.10.5.1 Alignment

An object's alignment is the set of addresses at which the compiler can allocate the ob­
ject. For example, the compiler can allocate byte aligned objects on any byte boundary;
it can allocate word aligned objects only at addresses that are evenly divisible by 2 (word
boundaries, or shortword boundaries); and it can allocate longword aligned objects only
at addresses that are evenly divisible by four (longword boundaries).

3.10.5.2 Natural Alignment

An object is naturally aligned if it begins at an address that is a mUltiple of its size in
bytes. For example, a 2-byte integer is naturally aligned if it starts on an even address
boundary. Similarly, an 8-byte double-precision floating-point number is naturally aligned
if it starts on an address divisible by 8. A record is considered to be naturally aligned when
it starts on a boundary that results in natural alignment for its fields.

Since char and boolean type values are one byte long, their natural alignment is byte
aligned. Similarly, since integer and integer16 values are two bytes long, their natural
alignment is word aligned. Since real, single, integer32, and pointer types are four bytes
long, their natural alignment is longword aligned. And, since double types are eight bytes
long, their natural alignment is quadword aligned. Figure 3-7 illustrates natural alignment
for these simple data types.

3.10.5.3 Guaranteed Default Alignment of Record Fields

A type's guaranteed default alignment is not necessarily the same as its natural alignment.
A type's guaranteed default alignment is the alignment it is guaranteed if a field of that
type is a component of a record. The guaranteed default alignment of types char and
boolean is byte alignment, which also happens to be the natural alignment for these types.
However, the guaranteed default alignment for the other unstructured types (integer, inte­
ger16, real, single, integer32, pointer, and double) is word alignment. Table 3-2 com­
pares the guaranteed default and natural alignments of the simple data types.

Data Types 3-23

Table 3-2. Guaranteed Default and Natural Alignment for Simple Data Types

Guaranteed
Data Type Default Alignment Natural Alignment

char byte byte

boolean byte byte

integer word word

integer16 word word

real word longword

single word longword

integer32 word longword

pointer word longword

double word quadword

3-24 Data Types

longword __ ------ 1 word----·~~
boundary

shortword __
boundary

longword __
boundary

shortword __
boundary

longword __
boundary

shortword __
boundary

longword __
boundary

shortword __
boundary

longword __
boundary

shortword __
boundary

longword __
boundary

shortword __
boundary

quadword __
boundary

shortword __
boundary

longword __
boundary

shortword __
boundary

char1 char2

bool1 bool2

BYTE ALIGNMENT

natural_integer

naturaLinteger18

WORD ALIGNMENT

natural_pointer

natural_integer32

LONGWORD ALIGNMENT

natural_double

QUAD WORD ALIGNMENT

Figure 3-7. Natural Alignment for Pascal Simple Data Types

Data Types 3-25

3.10.5.4 Default Alignment

The default alignment of a simple data type is the same as its natural alignment.

For the structured data types, such as records, default alignment is somewhat complex.
The default alignment rules affect two properties of records:

• How fields are laid out in the record (whether padding is inserted between fields).

• How memory for the entire record is allocated.

We describe these two properties in the next two sections.

3.10.5.5 Layout of Unpacked Records

Domain Pascal follows these rules for the layout of unpacked records:

• The size of a record must be an even number of bytes. There is no way to over­
ride this rule. This means that the smallest possible record is 2 bytes.

• The default alignment of the beginning of a record is at least word aligned.

• By default, Domain Pascal allocates the same amount of space for each field in a
record that the field would have required if it were not part of the record. For
example, the compiler allocates one byte for a char field.

• By default, the compiler lays out record fields based on their guaranteed default
alignment. Thus, all objects longer than a byte are aligned on word boundaries.
Objects which are chars and booleans may be aligned on byte boundaries.

• By default, the compiler aligns a record according to the largest alignment of its
fields.

• A byte aligned field may not cross two word boundaries. This means that a
32-bit object, such as an integer32 type variable, cannot be byte aligned.

The default alignment rules for the layout of records can produce padding (also called
"holes" or "gaps") in a structure. However, each gap is never larger than one byte.

For example, consider the following record declaration:

81 == record

end;

a: integer32;
b: char;
c: integer16

Figure 3-8 shows how the fields for SI records are laid out. Note that there is a byte of
padding inserted after b to ensure that c is aligned on a word boundary.

3-26 Data Types

.... 4---- 1 word

a

b

c

Figure 3-8. Default Layout of Record S1

Since the total size of a record must be a multiple of two bytes, records sometimes have a
byte of padding at the end. Figure 3-9 shows the layout of a record that contains a gap in
the middle and a gap at the end as a result of the default alignment rules.

82 = record

end;

c1: char;
81: integer16;
c2: char

Figure 3-9. Layout of Record S2

3.10. S. 6 Memory Allocation

Domain Pascal always allocates a record on at least a word boundary. It allocates a record
on a larger boundary if that larger allocation produces natural alignment for any of the re­
cord's fields. Specifically, the compiler uses the following algorithm to allocate records:

1. It assumes that the starting address of the record is zero.

2. It lays out the fields in the order they are declared, noting which fields are natu­
rally aligned.

3. It looks for the largest naturally aligned field.

4. The compiler allocates the entire record on a boundary that matches the natural
alignment for the field it identified in Step 3.

Data Types 3-27

Note that the compiler must layout the record before it allocates memory for it.

Consider the following record type:

83 = record

end;

a integer32;
b char;
c integer16

..... ----- 1 word ----...

o

2 a

4
b

6
c

Figure 3-10. Naturally Aligned Record S3 with 1-Byte Padding

Figure 3-10 shows the layout for S3. The compiler assumes a beginning address of 0 and
lays out the fields according to the default alignment rules. For this record, the default
alignment rules produce a layout in which all elements are naturally aligned. The compiler
then searches for the largest field that is naturally aligned, which is a. Since a's natural
alignment is longword, the compiler allocates records of type S3 on longword boundaries.

Consider a second example:

84 = record

end;

a integer16;
b integer32

Figure 3-11 shows the layout for S4. In this case, a is naturally aligned. However, b is
not naturally aligned because its offset from the start of the record, which is 2, is not
evenly divisible by its size, which is 4. The largest field in S4 that is naturally aligned,
therefore, is a. The compiler uses word alignment, which is the natural alignment of a, to
allocate records of type S4.

3-28 Data Types

o

2

b
4

Figure 3-11. Layout of S4 Using Word Alignment

3.10.5.7 Arranging Record Fields in Descending Order by Size

You can usually improve the efficiency of memory accesses significantly by carefully arrang­
ing fields within records. The best guideline to improve access efficiency when you set up
natural alignment for records is to arrange record fields in descending order by size. Con­
sider the following example:

FOO = record
a:char;
b:integer16;
c:char;
d:double;
e:integer32

end;

By default, this declaration will produce the memory arrangement shown in Figure 3-12.
Due to a poor ordering of fields, there are 4 bytes of gaps and members d and e are not
naturally aligned.

Data Types 3-29

~ 1 word • 0
a

2

4
c

6

8
d

10

12

14

e
16

Figure 3-12. Memory Arrangement for Record with Poorly Arranged Fields

Following the preceding rule of arranging fields according to descending order by size, you
change the declaration to:

FOO = record
d: double;
e: integer32;
b: integer16;
a, c: char

end;

The above declaration produces the memory arrangement shown in Figure 3-13. All fields
are naturally aligned and padding fields are not necessary to achieve natural alignment for
the record.

3-30 Data Types

-4 1 word ..
0

2

d
4

6

8

• 10

12
b

14
8 c

Figure 3-13. Memory Arrangement According to Decreasing Size of Fields

NOTE: You can usually guarantee that all fields of a record will be natu­
rally aligned by arranging the fields in descending order of size.
This will always work if all the fields are scalar objects. This tech­
nique may not work if one or more of the record fields is a record
or array. Arranging fields in decreasing order of size also guaran­
tees that there will be no padding between record fields, although
there might still be a byte of padding at the end of the record to
make it an even number of bytes.

In some instances, a record that would normally be allocated on a longword or quadword
boundary receives a different allocation because the record is part of a larger aggregate
type (e.g., a record or array). For example, consider the declaration of Sl:

81 = record

end;

x: integer32;
y: integer16

The compiler can guarantee that an individual record of type S 1 will be allocated on a
longword boundary (so that x and y will be naturally aligned), but if you declare an array
of three Sl records, only two-thirds of them will be aligned on longword boundaries:

Data Types 3-31

Figure 3-14 shows the layout of an array of three S1 records. Note that the second ele­
ment is aligned on a word (2-byte) boundary, not a longword (4-byte) boundary, and so
the second element is not naturally. aligned.

~ 1 word ..
0

2 x

4

6

8 x

10

12

14 x

16

Figure 3-14. Array of Sl Records, Not Naturally Aligned

To ensure that all elements of array_of_sl_records are naturally aligned, you need to in­
sert an additional word of padding at the end of S 1. You could do this explicitly, as
shown in the following declaration:

51 record

end;

x: integer32;
y: integer16;
padding: integer16

You could also tell the compiler to add the padding by using the natural or aligned attrib­
utes in the record declaration or by specifying a %natural_alignment compiler directive.
See the" Attributes" section of this chapter for details about the natural and aligned at­
tributes. See the "Compiler Directives" section of Chapter 4 for details about the %natu­
rat_alignment compiler directive.

3-32 Data Types

3.10.6 Aligned Record and Unaligned Record Data Type

To make sure that records are always naturally aligned regardless of the alignment environ­
ment, you can use the aligned record data type. The alignment environment is the align­
ment that you set when you use compiler directives or the default alignment that is set by
the compiler.

For example, the %natural_alignment directive tells the compiler to use natural alignment
for any data that does not have an alignment attribute in its declaration. (See the "Com­
piler Directives" section of Chapter 4 for more details about the %natural_alignment and
%word _ align men t directives.)

To declare an aligned record data type, use the following syntax:

type

record_name = aligned record
field] ;
field2;

fieldN;
end;

Note that the aligned record data type sets alignment for records only. The aligned and
natural attributes set alignment for records and fields.

The syntax for the aligned record data type is just like the syntax for a regular Domain
Pascal record except that you use aligned record instead of record. For example, con­
sider the following declaration:

TYPE
nat_ree ALIGNED RECORD

a : integer;
b : integer32;
END;

The above declaration defines an object of type nat_rec to be a record laid out as shown
in Figure 3-15.

Data Types 3-33

word

a

Figure 3-15. An Aligned Record Type Record

All nat_rec type objects will have the layout shown in Figure 3-15 even if they are in pro­
grams compiled with a %word_alignment directive.

To make sure that records are aligned according to word alignment rules regardless of their
alignment environment, use the unaligned record data type. To declare an unaligned
record type, use the following syntax:

type
record_name = unaligned record

field1 ;
field2;

fieldN;
end;

Note that the syntax for the unaligned record data type is just like the syntax for a regu­
lar Domain Pascal record except that you use unaligned record instead of record. For
example, consider the following declaration:

TYPE
not nat ree UNALIGNED RECORD

a : integer;
b : integer32;
END;

The preceding declaration defines an object of type not_nat_rec to be a record laid out as
shown in Figure 3-16.

3-34 Data Types

... ~----- 1 word

a

b 1-------------------------

Figure 3-16. An Unaligned Record Type Record

All not_nat_rec type objects will have the layout shown in Figure 3-16 even if they are in
programs compiled with a "natural_alignment directive.

3.10.7 Internal Representation of Packed Records

Table 3-3 shows the space required for fields in packed records.

Domain Pascal always starts the first field of a packed record on a word boundary. After
the first field, if the exact number of bits required for the next field crosses zero or one
16-bit boundary, the field starts in the next free bit. If the field would cross two or more
16-bit boundaries, it starts at the next 16-bit boundary. Pascal allocates fields left to right
within bytes and then by increasing byte address.

The minimum size of a packed record is 16 bits.

In packed records, characters are byte aligned. Structured types, except for sets, are
aligned on word boundaries. Sets are aligned only if they cross two or more 16-bit
boundaries.

Data Types 3-35

Table 3-3. Storage of Packed Record Fields

Data Type of Field Space Allocation

Integer; Integer16 16 bits; word aligned.

Integer32, Real, Single 32 bits; word aligned.

Double 64 bits; word aligned.

Boolean 1 bit; bit aligned.

Char 8 bits; byte aligned

Enumerated Number of bits required for largest ordinal value;
bit aligned.

Subrange Subrange of char fields require eight bits; all
other subrange fields take up the number of bits
required for their extreme values. Subrange of char
fields are byte aligned. All other subrange fields are
bit aligned.

Set If fewer than 32 elements, then exactly one bit per
element; if more then 32 elements, then same size as
set. Bit aligned.

Array Mayor may not be packed; requires the same space
as an array outside of a packed record. (See the
"Internal Representation of Arrays" section.)

Pointer 32 bits; word aligned.

The following type declaration, along with Figure 3-17, illustrates the storage of a packed
record type.

TYPE
Shapes = (Sphere, Cube, Ovoid, Cylinder, Tetrahedron);
Uses = (Toy, Tool, Weapon, Food);
Characteristics = PACKED RECORD

end;

Mass
Shape
B
Purpose
Low_temp
Class

Real;
Shapes;
Boolean;
SET OF Uses;
-100 .. 40;
'A' .. 'Z';

3-36 Data Types

The fields require the following number of bits:

Mass 32 bits (word aligned)
Shape 3 bits (bit aligned)
B 1 bit (bit aligned)
Purpose 4 bits (bit aligned)
Low_temp 8 bits (bit aligned)
Class 8 bits (word aligned)

(The variable low_temp requires eight bits because it can take a range of 140 values (-100
to +40) and seven bits can represent only 128 values.)

Domain Pascal represents fields in the same order you declared them, as shown in
Figure 3-17.

15 131211 8 7 o
Mass

Mass

Shape 1 sl Purpose Low temp

Class Unused

Figure 3-17. Sample Packed Record

In this example, the order of field declaration has been chosen very carefully. The whole
record takes up only eight bytes, and out of the eight bytes, only eight bits are unused. If
the fields had been declared in a different order, the record might have taken up 10 or 12
bytes.

3.11 Arrays

Like standard Pascal, Domain Pascal supports array types. An array consists of a fixed
number of elements of the same data type. This data type is called the component type.
The component type can be any predeclared or user-declared data type.

Use an index type to specify the number of elements the array contains. The index type
must be a subrange expression. Domain Pascal permits arrays of up to eight dimensions.
Specify one subrange expression for each dimension.

Data Types 3-37

I

This fragment includes declarations for five arrays:

TYPE
elements (H, He, Li, Be, B, C, N, 0, FI, Ne);

VAR

test_data
atomic_weights

last_name
a_thought
lie_test

{elements is an enumerated type.}

{Here are the five array declarations.}
array[1 .. 100] of INTEGER16;
array[H .. Be] of REAL; {Range defined in TYPE}

array[1 .. 15] of CHAR;
STRING;

{declaration. }

array[l .. 4,1 .. 2] of BOOLEAN; {2-dimensional array.}

Notice that variable a_thought is of type string. String is a predefined Domain Pascal ar­
ray type. Domain Pascal defines string as follows:

TYPE
string = array[1 .. 80] of CHAR;

In other words, string is a data type of 80 characters. Use string to handle lines of text
conveniently.

See the" Array Operations" listing in Chapter 4 for a description of array bound checking.

3.11.1 Initializing Array Variables-Extension

3-38

If an array has been declared static or its declaration is not in a function or procedure,
you can initialize array components in Domain Pascal in a variable declaration statement.
(See the "Accessing a Variable Stored in Another Pascal Module" and "Accessing a RoU­
tine Stored in Another Pascal Module" sections of Chapter 7 for more information on the
static attribute.) Domain Pascal initializes only those components for which it finds initiali­
zation data; it does not initialize the other components. For example, if an array consists
of 1 0 components and you specify six initialization constants, Domain Pascal initializes the
first six components and leaves the remaining four components uninitialized.

This section describes the following three basic methods of initializing single-dimensional
and multidimensional arrays:

• Initializing mUltiple components to a single value

• Initializing components individually

• Initializing using repeat counts

In addition, this section describes controlling the order of initialization and setting a default
for the size of the array.

Data Types

3.11.1.1 Initializing Multiple Components with a SingBe Expression-Extension

To initialize multiple components with a single expression, specify an assignment operator
(:=) followed by the value. This initialization method is especially useful for components of
type char, where the value is a string of characters. You can also initialize the char com­
ponents individually, but it's usually easier to do it as a string.

For example, consider the following single-dimensional initializations:

CONST
msg1 = 'This is message 1';

VAR
sl array [1 .. 40] of CHAR .- 'Quoted strings are ok';
s2 array [1 .. 30] of CHAR := msg1;
blank_line STRING .- chr(lO) ; {Newline}

These initializations assign elements 1 through 21 of array sl with the string "Quoted
strings are ok", elements 1 through 17 of array s2 with "This is message 1", and element
1 of blank_line with the newline character.

You can also use this method to initialize multidimensional arrays. To do this, you must
assign the value to each row. For example the following initialization statement initializes
columns 1 through 6 in rows 1 and 2 to 0:

VAR
I2 array[1 .. 2, 1 .. 6] of INTEGER16 .- [

[1 .. 6 .- 0],
[1 .. 6 .- 0],

] ;

3.11.1.2 Initializing Components to Individual Values-Extension

To initialize array components individually, specify an assignment operator (:=) followed by
the values to which the components should be initialized. You must enclose the values in­
side a pair of brackets and separate each value with a comma.

For example, consider the following single-dimensional array initializations:

VAR
I array[1 .. 6] of INTEGER16 := [1, 2, 4, 8, 16, 32];
R array[1 .. 3] of SINGLE := [-5.2, -7.3, -2E-3];
B array[l .. S] of BOOLEAN := [true, false, true, true, true];

Data Types 3-39

I
You can also use this method . (and the method described in Section 3.11.1. 1) to initialize
multidimensional arrays. For example, the following fragment initializes two multidimen­
sional arrays (12 and B2). 12 has two subrange index types (1..2 and 1..6). The first index
type consists of two values, so you must supply two rows of brackets. The second index is
1 .. 6, so you must specify six values for each row, initializing a total of 12 components.

VAR
I2 array[I .. 2, 1 .. 6] of INTEGER16 .-

B2 array[I .. 4, 1 .. 3] of BOOLEAN .-

[1,2,3,4,5,6],
[7,5,9,1,2,8],

] ;

[true, true, true],
[true, false, false],
[false, true, false],
[false, false, false],

] ;

3.11.1.3 Initializing Arrays Using Repeat Counts-Extension

Repeat counts let you initialize groups of elements in an array. There are two forms of
repeat counts.

The first form takes the following syntax:

n of constant

where of is a keyword, n is an integer, and constant is any valid constant that corresponds
to the data type specified in the declaration of the array.

This form tells the compiler to initialize n components of the array to the value of con­
stant. n can be an integer or an expression that evaluates to an integer. The following
initializations demonstrate this form of the repeat count:

CONST

VAR
x = 50;

a array[I .. 1024] of INTEGER16 := [512 OF 0, 512 OF -1];
b array[I .. 400] of REAL := [x of 3.14, 400-x OF 2.7];

In the preceding example, Domain Pascal initializes the first 512 values of array a to 0 and
the second 512 values to -1. Domain Pascal also initializes the first 50 components of ar­
ray b to 3.14 and the remaining 350 components to 2.7.

The second form of the repeat count takes the following syntax:

• of constant

3-40 Data Types

The asterisk (.) tells Domain Pascal to initialize the remainder of the components in the
array to the value of constant. The following initializations demonstrate this form of the
repeat count:

VAR
c array[l .. 2000] of INTEGER16 := [* of 0];
d array[1 .. 50] of BOOLEAN := [12 of true, * of false];

In the preceding example, Domain Pascal initializes all 2000 components in array c to O.
Domain Pascal also initializes the first 12 components of array d to true and the remaining
38 components to false.

You can use repeat counts to initialize multidimensional arrays. You must initialize a mul­
tidimensional array column by column rather than all at once. For example, compare the
right and wrong ways to initialize a 2-dimensional array:

VAR
x array[l .. 2, 1 .. 5]
Y array[l .. 2, 1 .. 5]
z array[l .. 2, 1 .. 5]

of INTEGER16
of INTEGER16
of INTEGER16

.-

.-

.-

[10 of 0];
[* of 0];
[

[5 of 0] ,
[5 of 0] ,

] ;
q array[l .. 2, 1 .. 5] of INTEGER16 .- [

[* of 0] ,

[* of 0] ,
] ;

3.11.1.4 Initializing Components in Any Order-Extension

{wrong!}
{wrong!}

{Right!}

{Right!}

You can initialize array components in any order. Consider the following initialization
statements:

VAR
C1 array[1 .. 7] of INTEGER .­

[

]

3 .. 4 2,
7
1
;

.- -1
3

These statements produce the following initializations:

Component 1 = 3
Component 2 = undefined
Component 3 = 2
Component 4 = 2
Component 5 = undefined
Component 6 = undefined
Component 7 = -1

Data Types 3-41

3.11.1.5 Defaulting the Size of an Array-Extension

When you initialize an array in the var declaration part of a program, you can let Domain
Pascal determine the size of the array for you. To do this, put an asterisk (*) in place of
the upper bound of the array declaration.

For example, in the following fragment, the upper bound of init4 is 18; the upper bound
of initS is 22; and the upper bound of init6 is 4. The compiler defines the upper bound
once it has counted the number of initializers.

CONST

VAR

msg5 = 'And this is message 5.';

init4
initS
init6

ARRAY[l .. *] of CHAR := 'This is message 4.';
ARRAY[l .. *l of CHAR := msg5;
ARRAY[l .. *] of INTEGER16 := [1, -17, 35, 46];

NOTE: You can use an asterisk in the index type only if you supply an
initialization value for the array. For example, the following frag­
ment causes a "Size of TABLEt is zero" warning:

VAR
table1 array[l .. *] of integer16;

3-42 Data Types

3.11.1. 6 Mixing Methods of Array Initialization-Extension

You can combine all methods of array initialization described in this section. The follow­
ing example illustrates the use of the methods to initialize an array named array_example:

CONST

TYPE

VAR

x = 100;

subr one, two, three, four, five, six, seven, eight, nine,
ten, eleven, twelve);

array_example; ARRAY [subr] OF integer :=
[

2 of -1,

four .. five := 47,

2 of x,

42,

ten .. * .- 814

] ;

{repeat count method}

{initializing multiple components
to a single value}

{repeat count method}

{initializing components
individually}

{initializing multiple components
to a single value}

The results of the preceding declarations are:

Component 1 = -1
Component 2 = -1
Component 3 = undefined
Component 4 = 47
Component 5 = 47
Component 6 = 100
Component 7 = 100
Component 8 = 42
Component 9 = undefined
Component 10 = 814
Component 11 = 814
Component 12 = 814

Data Types 3-43

\

3.11.2 Variable-Length Arrays-Extension

Domain Pascal supports an array data type that enables you to construct and manipulate
variable-length strings. A variable-length string is a string whose length can change dy­
namically during program execution. This is in contrast to a fixed-length string whose
length is specified by the subrange expression in its declaration. Although the size of a
variable-length string can change, it cannot exceed a maximum, which you specify in the
declaration.

The syntax for declaring a variable-length string is:

varying[max_length] of char;

where max_length is a positive integer between 1 and 65535.

For example, the following are legal declarations:

VAR
short_string
long_string
array_of_var_str

VARYING [10) of CHAR;
VARYING [10000) of CHAR;
ARRAY[1 .. 5) of VARYING[20) of CHAR;

It is illegal to use the varying type specifier with any type other than char.

When you declare a variable-length string, the compiler allocates enough memory to hold
a string of the maximum length. You can assign strings of any length not greater than the
maximum to the array. When the variable-length string is read, only as many. characters
as indicated by the current length are accessed.

Internally, the compiler translates the varying type into a record of the form:

RECORD

END;

length: 0 .. 65535;
body: PACKED ARRAY[l .. max_length) of CHAR;
{unnamed filler}

The length field contains the current length of the string. When you assign a string to a
variable-length character array, the compiler adjusts the value of length to reflect the size
of the assigned string. The body field contains the actual string. Following the body field,
the compiler allocates additional bytes, if necessary, for a trailing null character and pad­
ding. The trailing null character and pad bytes are described in the following section.

You can reference the length and body fields explicitly by using the same syntax and se­
mantics you would use for a normal record. For example:

cur_length := short_string. length;
last_char := short_string.body[short_string.length);

3-44 Data Types

Be aware that if you update the character string in the body field. it will not automatically
update the value in the length field.

It is illegal to subscript a variable-length array. For example:

VAR
var_string VARYING [100] of CHAR;

var_string[5] .- 'a'; { ILLEGAL }

To access a particular element in a variable-length string. subscript into the body field.

3.11.3 Packed Arrays

Like standard Pascal. Domain Pascal allows you to use packed arrays to store sequences of
characters. byte integers. and boolean variables. To declare a packed array. use the fol­
lowing format:

var

name_oJ_array : packed array [low_value .. high_value] of variable_type;

For example. consider the following variable declarations:

VAR
switches: PACKED ARRAY [1 .. 100] OF boolean;
names: PACKED ARRAY [1 .. 25] OF char;
numbers: PACKED ARRAY [0 .. 100] OF integer;

Although you can save space by using packed arrays, you may pay a price in the efficiency
of loading from and storing to elements in the arrays.

3.11.4 Internal Representation of Arrays

Packed arrays usually require less storage space than arrays that are not packed. In this
section we describe how both types of arrays are represented internally.

3.11.4.1 Non-Packed Arrays

With two exceptions. the total amount of memory required to store an array that is not
packed equals the number of elements in the array times the amount of space required to
store one element. The amount of space for one element depends on the component type
of the array. as shown in Table 3-4.

Data Types 3-45

Table 3-4. Size of One Element of an Array

Base Data Type Size of One Element

Integer 16 or Integer 16 bits

Integer32 32 bits

Single or Real 32 bits

Double 64 bits

Boolean 8 bits

Char 8 bits

Subrange size of base type of subrange

Enumerated 16 bits

The two exceptions to this rule are arrays of booleans and varying arrays of chars.

If the component type of an array is boolean and an odd number of elements are de­
clared, the compiler adds an extra pad byte to the storage space for the array so that the
storage is an even number of bytes. For example, if you declare boolean array b as

VAR
b : array[1 .. 5] of boolean;

Domain Pascal reserves six bytes of memory for b.

A variable-length string always begins with a 2-byte length field, followed by the body
field, followed by padding. The body field must always be capable of holding a null char­
acter at the position just beyond the current length. Consequently, the compiler always
allocates to the body field one byte more than the maximum length specified in the decla­
ration. The compiler adds 2 or 3 bytes of padding to make the total size of the string an
even number of longwords (4 bytes).

In summary, to figure the total number of bytes allocated for a variable-length string: add
either 5 or 6 bytes to the number of bytes specified as the maximum length for the string
such that the total number of bytes is an even number. For instance:

VAR
v2: VARYING [2] OF CHAR;
v7: VARYING [7] OF CHAR;
vB: VARYING[B] OF CHAR;

Multidimensional Arrays

{B bytes are allocated}
{12 bytes are allocated}
{14 bytes are allocated}

Multidimensional arrays are stored in row major order. Given a 2-dimensional array of
the following declaration:

a : array[1 .. 2, 1 .. 3] of integer16;

3-46 Data Types

Domain Pascal represents it in the following order:

a[l,l] first
a[l,2] second
a[l,3] third
a[2,l] fourth
a[2,2] fifth
a[2,3] sixth

3.11.4.2 Packed Arrays

Table 3-5 shows the space required for each type of element in a packed array.

Table 3-5. Storage of Packed Array Elements

Type of Element Space Allocation

Subranges of integers Exact number of bits required .;
Enumerated bit aligned ••
Subrange of enumerated

Integer 16 bits; word aligned
Integer16

Boolean 1 bit; bit aligned

Real 32 bits; word aligned
Integer32
Pointer

Double 64 bits; word aligned

Character 8 bits; byte aligned
Subrange of character

Character array Exact number of bytes required; byte
aligned

Record Exact number of words required; word
Array of non-characters aligned

Set Exact number of bits required 1;

bit aligned 2

1 If the element size is less than 16 bits, the element is padded up to the nearest
power of 2 bits.

2 If the element size is greater than 16 bits, then the elements are word aligned.

In packed arrays, if the element size is less than 16 bits, then the element is padded up to
the nearest power of 2 bits. Thus, in the following example, 4 bits would be used to store
each element of arrayl and 2 bytes would be used to store the entire arrayl:

array1: PACKED ARRAY [1 .. 3] OF 0 .. 7

Data Types 3-47

I

I

Contrast this to the following declaration:

array2: ARRAY [1 .. 3] OF 0 .. 7

Each element of arrayl requires 16 bits of storage, and 48 bits would be used to store the
entire arrayl.

3.12 Files

When you open a file for I/O access, you must specify a file variable that will be the pseu­
donym for the actual pathname of the file. Thereafter, you specify the file variable (not
the pathname) to refer to the file. Domain Pascal supports the file data type and the text
data type. (Throughout this manual, the word "file," in boldface type, means the file data
type, and the word "file," in roman type, means a disk file.) Files of both file type and
text type are stored as Domain unstruct (unstructured ISO Latin-1) files. These files are
compatible with text . files produced under UNIX systems.

The following declaration establishes variable fl as an identifier of a text file:

VAH
fl : text;

A text file contains sequences of ISO Latin-1 characters representing variable-length lines
of text. You can read or write entire lines of a text file. You can read from or write to a
text file the values of a variable of any type (except pointer and file). Chapter 8 describes
text files in more detail.

You specify a file variable with the following format:

variable: file of base_type;

A variable with the file type specifies an unstruct binary file composed of values having
the base_type. That is, the only permissible values in such a file all have the same data
type, that of the base_type. The base_type can be any type except a pointer, file, or text
type. For example, the following declaration creates a file type corresponding to a file that
consists entirely of student records:

TYPE
student record

name array [1 .. 30] of char;
id integer32

end;
U_of_M FILE OF student;

The Domain/OS operating system stores each occurrence of student in 34 bytes: 30 bytes
for name and 4 bytes for id.

3-48 Data Types

NOTE: Older versions of Domain Pascal created special record struc­
tured Domain files (called "rec" files) when you opened a file
with file type. For compatibility with older versions, the current
version of Domain Pascal allows you to manipulate rec files, but
you cannot create them. When you open an existing file with the
file type, Domain Pascal checks whether it is a rec or unstruct
file, and accesses it appropriately. Whenever you open a new file,
however, Domain Pascal creates an unstruct file.

3.13 Pointers

A pointer variable points to a dynamic variable. In Domain Pascal, the value of a pointer
variable is a variable's virtual address. Domain Pascal supports the pointer type declaration
of standard Pascal as well as a special univ _ptr data type and procedure and function
pointer types. This section details the declaration of pointer types. You should also refer to
the "Pointer Operations" listing of Chapter 4 for information on using pointers in your pro­
grams.

3.13.1 Standard Pointer Type

To declare a pointer type, use the following format:

type
name_oj_type = "typename;

You can specify any data type for typename. The pointer type can point only to variables
of the given typename. For example, consider the following pointer type and variable dec­
larations:

TYPE

ptr_to_int16 = "integer16;
ptr_to_real = "real;
studentptr = "student;
student = record

{points only to integer16 variables.}
{Paints only to real variables.}

{points only to student record variables.}

name: array[l .. 25] of char;

end;

id : integer;
next_student : studentptr;

VAR
x integer16;
p_x : ptr_to_int16;
half_life: real;
p_half_life : ptr_to_real;
Brown_Univ : student;

Data Types 3~49

I

3.13.2 Univ ytr-Extension

The predeclared data type univ _ptr is a universal pointer type. A variable of type
univ_ptr can hold a pointer to a variable of any type.

You can use a univJ)tr variable only in the following contexts:

• Comparison with a pointer of any type

• Assignment to or from a pointer of any type

• Formal or actual parameter for any pointer type

• Assignment to the result of a function

Note that you cannot dereference a univ.J)tr variable. Dereferencing means finding the
contents at the logical address that the pointer points to. You must use a variable of an
explicit pointer type for the dereference. Please see the "Pointer Operations" listing in
Chapter 4 for more information on univ _ptr.

3.13.3 Procedure and Function Pointer Data Types-Extension

Domain Pascal supports a special pointer data type that points to a procedure or a func­
tion. By using procedure and function data types, you can pass the addresses of routines
obtained with the addr predeclared function. (See the addr listing of Chapter 4 for a de­
scription of this function.) You may obtain the addresses only of top-level procedures and
functions; you cannot obtain the addresses of nested or explicitly declared internal proce­
dures and functions. Note that the compiler checks pointers for data type and name com­
patibility when addresses are assigned to a pointer or procedure. (See Chapter 5 for details
about declaring internal procedures and details about compatibility checking of pointers.
See Chapter 7 for details about using internal.)

Procedure and function pointer type declarations are the same as regular procedure and
function declarations, except for the following:

• The procedure or function has no identifier; in other words, the procedure or
function does not have a name.

• The type declaration begins with a caret (A), as in standard pointer type declara­
tions.

You can declare procedure and function pointers in either of two ways: in the type and
var declaration parts or just in the var declaration part.

Here is an example of declaring a procedure pointer and a function pointer using both the
type and var declaration parts:

TYPE

VAR

3-50 Data Types

proc_ptr
func_ptr

"procedure (a,h,c: integer);
"function (x,y: real): real;

my_proc_ptr: proc_ptr;
my_func_ptr: func_ptr;

And here is an example of declaring the same pointers as above in just the var declaration
part:

VAR
my_proc_ptr: Aprocedure (a,b,c: integer);
my_func_ptr: Afunction (x,y: real): real;

See the "Pointers to Routines-Extension" section of Chapter 5 for a sample program
showing how to pass function pointers as parameters.

3.13.4 Initializing Pointer Variables-Extension

Domain Pascal permits you to initialize the values of pointer variables within its variable
declaration in most cases. You initialize a value by placing a colon and equal sign (:=) im­
mediately after the data type. For example, the following fragment declares my _ptr as a
type ptr_to_int16 with an initial value of NIL:

TYPE

VAR
my_ptr : ptr_to_int16 := NIL;

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions. For example, the following is incorrect:

TYPE

FUNCTION do_nothing(IN OUT x
VAR

INTEGER) BOOLEAN;

{Wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

my_ptr : STATIC ptr_to_int16 := NIL; {Right!}

See Chapter 7 for information on the static attribute.

3.13.5 Intemal Representation of Pointers

Domain Pascal stores pointer variables in the 32-bit record shown in Figure 3-18.

31 16

Address

I Address

15 0

Figure 3-18. Pointer Variable Format

Data Types 3-51

By default, pointer-type objects are stored on longword boundaries.

A pointer to a procedure or function (a Domain Pascal extension) points to the starting
address of that routine.

3.14 Putting Variables into Overlay Sections-Extension

A section is a named area of code or data. An overlay section is a section whose contri­
bution from a module "overlays" that of other modules. A Domain Pascal overlay section
is just like a named common block in FORTRAN.

At run time, the code or data in a particular section occupies contiguous logical addresses.
By default, all variables that you declare in a var declaration part are stored in the . data
section. However, Domain Pascal lets you assign variables to sections other than .data.

To specify an overlay data section, place the section name inside a set of parentheses after
the reserved word var. The section name can be any valid identifier or a string within quo­
tation marks. For example, both of the following are valid names for a section:

thi s_is_a_sect ion_name

'this is a section name'

The following is the format to declare a section name for a var declaration part.

var (section_name)
identifier _list 1 : typename 1 ;

[
identifier _listN : typenameN;]

All the variables named in all the identifier_lists will be stored in section name. Since
you can put multiple var declaration parts in the same program, you can create multiple
named sections. If you do not specify a section_name, Domain Pascal puts the variables in
the .data section.

Domain Pascal allocates variables defined in a var declaration part sequentially within the
specified section. If more than one var declaration specifies the same section name, the
subsequent declarations are considered to be continuations of the first declaration.

By forcing certain variables into the same section, you can reduce the number of page
faults and thus make your program execute faster. For example, suppose you declare the
following three variables:

VAR

3-52 Data Types

integer16;
array[l .. 5000] of integer16;
single;

Further suppose that whenever you need the value of x, you also need the value of y. By
default. Domain Pascal places x, b_data. and y inside the .data section. The .data section
encompasses 10 pages (1 page = 1024 bytes). There is no way to ensure that x and y will
be on the same page in .data because Domain Pascal might place b_data in between x
and y. However, by putting x and y in the same named section, you can improve the odds
to over 99%. For example, to put x and y into section important, you must issue the fol­
lowing declarations:

VAR (important)
x INTEGER16;
y : REAL;

{will go into section "important"}
{will go into section "important"}

VAR
b_data: array[1 .. 5000] of INTEGER16; {will go into section ".data"}

See the "Section-Extension" section of Chapter 5 for information about using sections
within routines. Sections are important at bind time. For complete information on the Do­
main binder, see the Domain/OS Programming Environment Reference.

3.15 Attributes for Variables and Types-Extension

Domain Pascal supports attributes for variables and types. These attributes supply additional
information to the compiler when you declare a variable or a type. The attribute names
are:

• volatile

• atomic

• device

• address

• bit, byte, word, long, quad (size attributes)

• aligned(n), natural (alignment attributes)

The volatile, atomic, and device attributes enable you to turn off certain compiler op­
timizations that would otherwise ruin programs that access device registers or shared mem­
ory locations. The address attribute associates a variable with a specific virtual address.
Alignment and size attributes enable you to enhance your program's performance by speci­
fying storage allocation and data layout information.

Specify volatile, device, alignment, and size attributes inside a pair of brackets immedi­
ately before the type in the type or var declaration. For example:

TYPE
[VOLATILE] array[l .. 10) of integer;

VAR
x [DEVICE] integer16;

Data Types 3-53

Specify address and atomic: attributes inside a pair of brackets immediately prior to the
type in the var declaration. For example:

VAR
x: [ATOMIC] integer;

To specify more than one attribute for a particular data type or variable, separate the at ..
tributes with commas. For example:

VAR
x: [ATOMIC, DEVICE] integer;

Table 3-6 summarizes the attributes that Domain Pascal supports. The following subsec ..
tions provide details about the attributes.

3-54 Data Types

Attribute

volatile

atomic

device

address

SIZE
ATTRIBUTES

bit
byte
word
long
quad

ALIGNMENT
ATTRIBUTES

aligned
natural

Table 3-6. Summary of Attributes for Variables and Types

Example of Syntax

TYPE
int array = [volatile]

- array[l .. lO]of integer;
VAR

x: [volatile] integer;

VAR
x: [atomic] integer;

TYPE
keyboard = [device] char;

VAR
x: [device] integer16;

VAR
peb page: [address

(16'ff7000) ,device] char;

TYPE
big boo =

- [long] boolean;
VAR

large boo:
-[long] boolean;

TYPE
word aligned integer32 =

[aligned(l)] integer32;
VAR

natural_int:[natural]integer;

Purpose

Prevent certain default optimiza­
tions based on assumptions about
value.

Implies volatile. Also perform up­
dates with single instruction when
possible.

Implies volatile. Also prevent addi­
tional optimizations.

Bind a variable to a specified virtual
address (use with volatile or de­
vice).

Specify amount of storage for types
and/or objects.

Control the data layout.

Data Types 3-55

3.15.1 Volatile-Extension

Volatile informs the compiler that memory contents may change in a way that the compiler
cannot predict. There are two situations, in particular, where this might occur:

• The variable is in a shared memory location accessed by two or more processes.

• The variable is accessible through two different access paths. (That is, multiple
pointers with different base types refer to the same memory locations.)

In both of these situations, it is crucial that you tell the compiler not to perform certain
default optimizations.

For example, the following module causes optimizations leading to erroneous behavior:

Module volatile_example;

VAR
P : "integer;

Procedure Init(VAR v
BEGIN

p .- addr(v);
END;

Procedure Update;
BEGIN

integer);

p" .- p" + 1; {anonymous path.}
END;

Procedure Top;
VAR

i : integer;
BEGIN

Init(i);
i := 0;
while i < 10 do

update;
END;

{ViSible modification. }
{Visible reference. }
{Hidden modification to i.}

However, you can prevent these destructive optimizations if you change the declaration of
variable ito:

VAR
i : [volatile] integer;

3.15.2 Atomic-Extension

You declare a variable to be atomic if you want to make sure that its value does not
change unpredictably as a result of mUltiprocessing. Atomic prevents the same optimiza­
tions as volatile. In addition, the compiler handles any assignment statements whose left
side is a variable specified as atomic and whose right side contains the same variable in a
special way that protects the value of the variable from being changed by other processes.

3-56 Data Types

Atomic attributes can only be used with scalar variables. The scalar data types are integer,
Boolean, character, and enumerated.

For example, consider the following declaration:

VAR
x: [atomic] integer;

The above declaration tells the compiler to make sure that the value of x is not changed
by other processes while it completes an assignment statement such as the following:

x := x + 2;

3.15.3 Device-Extension

Device informs the compiler that a device register (control or data) is mapped to a specific
virtual address. Device registers are memory locations bound to a specific device, such as
a disk drive. The device attribute prevents the same optimizations that volatile prevents,
and it also prevents two other optimizations, which are described below.

By default, the compiler optimizes certain adjacent references by merging them into one
large reference. The device attribute prevents this optimization.

For example, consider the following fragment:

VAR
a,b : integer16;

BEGIN
a .- 0;
b .- 0;

By default, the compiler optimizes the two 16-bit assignments by merging them into one
32-bit assignment. (That is, at run time, the system assigns a 32-bit zero instead of assign­
ing two 16-bit zeros.) By specifying the device attribute, you suppress this optimization.

The device attribute also prevents the compiler from generating gratuitous read-modify­
write references for device registers. That is, specifying a variable as device causes the
compiler to avoid using instructions that do unnecessary reads.

Now, consider an example. Suppose kb in the following fragment is a device register that
accepts characters from the keyboard.

TYPE

VAR

keyboard

c, c1
kb

char;

char;
"'keyboard;

BEGIN
c .- kb"';
c1 . - kb"';

Data Types 3-57

The purpose of the program is to read a character from the keyboard and store it in c,
then read the next character and store it in ct. However, the compiler, unaware that the
value of kb can be changed outside of the block, optimizes the code as follows: it stores
the value of kb in a register, and thus assigns the same value to both c and ct. Obviously,
this· is not what the programmer intended since Domain Pascal assigns the same character
to both c and ct. To ensure that Domain Pascal reads kb twice, declare it as:

TYPE
keyboard = [DEVICE] char;

Another situation when normal optimization techniques can change the meaning of a pro­
gram is in loop-invariant expressions. For instance, using the keyboard example again, sup­
pose you have the program segment:

TYPE
keyboard char;

VAR
x integer;
c char;
kb "keyboard;

while (x < 10) do
begin
c := kb";
foo(c);
x := x + 1;
end;

The purpose of the block is to read 10 successive characters from the keyboard and pass
each to a function called foo. However, to the compiler, it looks like an inefficient pro­
gram since c will be assigned the same value 10 times. To optimize the program, the com­
piler may translate it as if it had been written as follows:

c := kb";
while (x<10) do

begin
foo(c);
x := x + 1;
end;

To ensure that the compiler does not optimize your program in that manner, declare kb as
follows:

TYPE
keyboard = [DEVICE] char;

VAR
kb : "keyboard;

3-58 Data Types

In addition to suppressing optimizations, you can also use device to specify that a device is
either exclusively read from or exclusively written to. You achieve this by using the read
and write options which have the following meanings:

• Device(read)-This attribute specifies read-only access for this variable or type.
That is, if you attempt to write to this variable, the compiler flags the attempt as
invalid and issues an error message.

• Device(write)-This attribute specifies write-only access for this variable or type.
That is, if you attempt to read from this variable, the compiler flags the attempt as
invalid and issues an error message.

• Device(read, write)-This attribute specifies both read and write access for this
variable. This attribute is identical to the device attribute without any options.

• Device(write, read)-Same as device(read, write).

For example, here are some sample declarations using the device attributes:

TYPE
truth_array: [DEVICE] array[l .. lO] of boolean;

VAR

c
c2
t

[DEVICE(read)] char;
[DEVICE(write)] char;
truth_array;

3.15.4 Address-Extension

Address takes one required argument.

{read-only access.}
{write-only access.}

{read and write access.}

The address specifier binds a variable to the specified virtual address, specified by a con­
stant. You can only use address in a var declaration, not in a type declaration.

Address is useful for referencing objects at fixed locations in the address space, such as
device registers, the PEB (Performance Enhancement Board) page, or certain system data
records. Typically, the compiler generates absolute addressing modes when accessing such
an operand. You cannot specify define, extern, or static when you use this option.

Using address by itself (without device or volatile) does not suppress any compiler op­
timizations. You should use it in conjunction with volatile or device. The example below
associates the variable peb_page with the hexadecimal virtual address FF7000.

VAR
peb_page [ADDRESS (16#FF7000), DEVICE(read)] char;

Data Types 3-59

3.15.5 Size-Extension

Size attributes specify the amount of storage to be reserved for the following:

• Variables

• Formal parameters

• Function results

• Record fields

• Array components

You declare size attributes in either of two ways-as part of a type-identifier or as part of
an object. Declaring a size attribute as part of a type identifier indicates the amount of
storage to be reserved for every object of that type. Declaring a size attribute as part of
an object declaration specifies the amount of storage reserved for that particular object.

Domain Pascal supports five size attribute-names:

• bit (1 bit)

• byte (8 bits)

• word (16 bits)

• long (32 bits)

• quad (64 bits)

Each attribute-name represents a unit of storage. You indicate the number of units of
storage to be reserved by including an integer-expression, n, in parentheses immediately
after the attribute-name, as follows:

[attribute-name [(n)]] typename

If (n) is missing, then the compiler uses a default value of 1.

For example, each of these two variable declarations reserves 32 bits of memory 'for
original_value:

TYPE
big_number = [long] integer16;

VAR
original_value

and

VAR
original_value [long] integer16;

3-60 Data Types

Compare the above declarations to the following declaration, which reserves 16 bits for
original_value:

VAR
original_value: integer16;

In Domain Pascal, the following size rules apply:

• Every data type has a minimum size.

• A size attribute must specify at least the number of bits required for the type to
which it is applied.

• A size attribute can specify a number of bits greater than the minimum for inte­
ger, boolean, and set data types. If you use a size attribute to specify a size
larger than the minimum for a data type, then the compiler uses all of the bits in
the larger object to represent the value of an object of that type.

Table 3-7 shows the minimum number of bits for Domain Pascal data types.

Table 3-7. Size of Simple Data Types

Data Type Minimum Size

Integer16 or Integer 16 bits

Integer32 32 bits

Single or Real 32 bits

Double 64 bits

Boolean 8 bits

Char 8 bits

Subrange Number of bits needed
to store subrange

Enumerated 16 bits

Data Types 3-61

You can use size attributes to create bit arrays. Domain Pascal supports arrays of 1-, 2-,
and 4-bit elements. The order of elements within words is from most significant bit to
least significant bit. The only aggregate bit array operation that Domain Pascal supports is
aggregate assignment. The following program illustrates the use of bit arrays:

program bit_array;
type

element = [bit (4)] O .. 1;
{Declares a subrange type that occupies 4 bits.}

arr = packed array [1 .. 6] of element;
{You need to say 'PACKED' to get the intended size, 3 bytes}

VAR
a1 : arr;

begin

end.

a1 [4] : = 2;
wri teln ('The
writeln('

size of a1 is: '
a1[4] = '

The output of this program is as follows:

The size of a1 is:
a1[4] =

3 bytes
2

sizeof(a1):4, ' bytes');
a1[4]:4);

You can also use size attributes to declare an array of byte integers, such as:

TYPE
byte_integer = [byte] O .. 255;
byte_int_array = array[l .. 1000] of byte_integer;

Finally, size attributes are useful for declaring variables in Domain Pascal that you want to
correspond to data types in other languages. For example, the Domain Pascal type
[byte] 0 .. 255 corresponds to the unsigned char data type in Domain/C. (See Chapter 7
for a more detailed discussion of cross-language communication.)

Notice that you use size attributes in the declaration part of your program, whereas you use
type transfer functions in the action part of your program. (See the "Type Transfer Func­
tions" listing in Chapter 4 for details about type transfer functions.)

3.15.6 Alignment-Extension

Domain Pascal supports two alignment attributes: aligned and natural. In the following
sections we tell you:

• The format for the aligned and natural attributes.

• How to use natural and aligned to align objects on natural boundaries.

• How to use aligned to prevent padding by default.

3-62 Data Types

• How to use aligned to ensure the same record layout in all alignment environ­
ments.

• How to suppress informational messages about alignment by using the alignment
attributes.

• How and why to use alignment attributes to inform the compiler that an object is
not naturally aligned. This is especially important in connection with dereferenc­
ing pointers and passing arguments by reference.

3.15.6.1 Format for the aligned and natural Attributes

The format for the aligned attribute is:

[aligned [(n)]] typename;

where n is the number of low order zeros in the address (in binary representation). If you
omit a value for n, then the compiler will default to a value of 0 (byte aligned). Note
that:

aligned specifies byte alignment

aligned (I) specifies word alignment

aligned (2) specifies longword alignment

aligned (3) specifies quadword alignment

aligned (4) specifies octaword alignment

Thus, aligned(n) implies 2**n-byte alignment. For example, the declaration

TYPE
word_aligned_integer32 = [ALIGNED(l)] integer32;

tells the compiler that all objects of type word_aligned_integer32 are at least word
aligned.

The format for the natural attribute is as follows:

[natural] typename;

For example, the declaration

TYPE
natural_integer32 = [NATURAL] integer32;

tells the compiler that all objects of type natural_integer32 are at least longword aligned.

Data Types 3-63

The natural attribute has one main use;

• Overriding the· default alignment rules to ensure that objects are stored on natural
boundaries.

Similarly, you can use the aligned attribute to ensure natural alignment by specifying the
correct value for n. In addition, the aligned attribute has these uses:

• Preventing the compiler from inserting padding in records.

• Ensuring the same layout in all alignment environments.

• Suppressing informational messages.

• Dereferencing pointers to unaligned objects.

• Passing arguments by reference.

Each of these uses is described in the following sections.

3.1S. 6. 2 Aligning Objects on Natural Boundaries

In general, natural alignment produces faster executable code, although the efficiency sav­
ings vary a great deal from one processor to another. (See Section 3.10.5 for a descrip­
tion of natural alignment.) Code for the 68000 family of processors runs slightly faster if
objects are naturally aligned. Code for the Series 10000 workstations runs significantly
faster if objects are naturally aligned. Moreover, on the Series 10000, if the compiler as­
sumes that an object is naturally aligned when it is not, then the loss of efficiency is se­
vere.

Although natural alignment often results in faster code, it can also produce holes in struc­
tures such as arrays and records, which can have an impact on memory efficiency. Before
naturally aligning record fields, you need to weigh these two efficiency concerns.

The aligned and natural attributes override the default alignment rules (described in the
"Internal Representation of Unpacked Records" section of this chapter) as well as the
alignment rules specified by any compiler alignment directive that is currently in effect.
(See Chapter 4 for more information about specifying alignment rules with compiler direc­
tives.)

Note that if all of the record fields are scalar, it is always possible to guarantee natural
alignment of the entire record by arranging the fields in decreasing order of size. This
method is preferable to using the aligned and natural attributes because it is portable.
(See the "Internal Representation of Unpacked Records" section of this chapter for an
example of using this rule.)

3-64 Data Types

Although it is usually possible to align record fields naturally by arranging them in descend­
ing order of size, the arrangement of fields does not guarantee that a record will remain
aligned if it is used within another aggregate (that is, in an array or record). Consider the
following example:

TYPE
S record

end;

a: integer32;
b: integer16

The layout is shown in Figure 3-19. Note that both a and b are naturally aligned, and
that the entire record is aligned on a longword boundary .

... 1 word 0-------------.......

2 a

4

Figure 3-19. Naturally Aligned Record S

Note what happens, however, if we declare an array of three S records:

VAR
bunch_of_records: ARRAY [1 .. 3] OF S;

The memory layout for this array is shown in Figure 3-20.

Data Types 3-65

4 1 word ..
0

2 a

4

6

8 a

10

12

14 a

16

Figure 3-20. Array of S Records

Note that the second element of the array, which starts at address 6, is not naturally
aligned. This alignment results from the fact that each element is six bytes long and array
elements must be laid out contiguously in memory. There are several solutions to this
problem. They are as follows:

• Explicitly enter a word of padding in the record so that the total size of the re­
cord is divisible by four. Specifically, change the declaration of S-type records to:

TYPE
S record

end;

a: integer32;
b: integer16;
padding: integer16

• Use the natural attribute for the record. Specifically, change the declaration to:

TYPE

3-66 Data Types

S [NATURAL] record
a: integer32;
b: integer16

end;

• Use the aligned attribute for the record. Specifically, change the declaration to:

TYPE
S [ALIGNED(2)] record

a: integer32;
b: integer16

end;

• Use the natural attribute for field a. This works because a record inherits the
largest alignment specification of its fields. Since a is declared to be aligned on a
longword boundary, the entire record will be also be longword aligned. Specifi­
cally, change the declaration to:

TYPE
S record

end;

a: [NATURAL] integer32;
b: integer16

• Use the aligned attribute for field a. This method also works because of the rule
that a record inherits the largest alignment specification of its fields. Specifically,
change the declaration to:

TYPE
S record

end;

a: [ALIGNED(2)] integer32;
b: integer16

Figure 3-21 shows the memory allocation for S records resulting from all of the above
methods of declaring S.

1 word ___ --I

o~----------------------

2 a

4~-----------------------------------~
b

6

Figure 3-21. Naturally Aligned Record S

The principal difference between declaring a padding field and using an alignment attribute
is that the padding word is accessible if you explicitly declare it. It is inaccessible if the
compiler includes it to satisfy an alignment attribute. Furthermore, if you use padding in­
stead of the attribute, your record declaration is portable.

Data Types 3-67

NOTE: Assigning attribute specifications to a record or field can have
unexpected repercussions. Consider the following declarations:

3-68 Data Types

TYPE

S record
a: [NATURAL] integer32;
b: integer16

end;
Sl record

x: integer16;
y: S;
z: integer16

end;

The layout for record S is shown in Figure 3-21 and the layout
for SI is shown in Figure 3-22. Note that record S inherits the
alignment of field a (longword alignment) and that this alignment
requirement causes an additional word of padding to be inserted
between x and y. In addition, record S 1 inherits longword align­
ment from record S, causing a word of padding to be added at the
end of S1.

... word ~

0
x

2

4

6 S.a

8
S.b

10

12

14

16
Figure 3-22. Naturally Aligned Record Sl

3.1S.6.3 Using the aligned Attribute to Prevent Padding

In the previous example, we used the aligned attribute to insert padding in a record so
that the size of the record would be evenly divisible by the size of its largest field (four
bytes). You can also use the aligned attribute to prevent the compiler from inserting pad­
ding. This is particularly useful. if you need to declare a record that maps onto an existing
layout (for example, a shared memory area).

Suppose, for example, that you want to declare a record that consists of a char followed
by two integers:

TYPE
52 record

a: char;
b, c: integer16

end;

By default, the compiler produces the layout shown in Figure 3-23.

... 1 word------I~~

Figure 3-23. Default Layout for Sl

The compiler inserts a byte of padding after a to ensure that b starts on a word boundary.
If you want to create a record without padding at this position, you need to use the
aligned specifier as shown in the following declaration:

TYPE
82 record

a: char;
b, c: [ALIGNED(O)] integer16

end;

The aligned(O) attribute tells the compiler that these fields may be aligned on byte
boundaries. This declaration results in the layout shown in Figure 3-24.

Data Types 3-69

1 word ...
0-------
2

4

6

Figure 3-24. Layout for Sl with Byte Alignment Specified

Note that the compiler still inserts a byte of padding so that the size of the record is evenly
divisible by two. There is no way to suppress this trailing byte. Records created by Do­
main Pascal are always 2-byte multiples.

Suppressing padding sometimes becomes more important if a "natural_alignment directive
is in effect. The "natural_alignment directive tells the compiler to use natural alignment
for any data that does not have an alignment attribute in its declaration. (See the "Com­
piler Directives" section of Chapter 4 for more details about the "natural_alignment
directive). Consider the following declaration:

81 = record

end;

a: char;
b: integer32;
c: char

The "natural_alignment directive applies not only to each field, but also to the entire
record. A record is considered to be naturally aligned if it starts on a boundary that en­
sures natural alignment for its largest field (and every other field). The layout for SI is
shown in Figure 3-25.

3-70 Data Types

.. 1 word ~

0

2

4

6

8

10

Figure 3-25. Layout for Sl with Natural Alignment Specified

By specifying word alignment for the record, we can remove the final word of padding, as
shown in Figure 3-26.

TYPE
51 = [ALIGNED(1)] record

a: chari

endi

b: integer32i
c: char

1 word ----.~.

Figure 3-26. Layout for Sl with Word Alignment Specified

Data Types 3-71

To remove at least some of the padding between a and b, we need to specify word align­
ment for b. Figure 3-27 shows the layout if we specify word alignment for b as well as for
the whole record.

TYPE
81 = [ALIGNED(1)] record

a: char;

end;

b: [ALIGNED(1)] integer32;
c: char

... 1 word,..-----I~~

o----------------------~--~----~--~
a

4

c

Figure 3-27. Layout for Sl with Word Alignment for B Specified

Note that specifying byte alignment for b produces the same layout as specifying word
alignment for b-namely, the layout in Figure 3-27. The results are the same because of
the rule that a byte aligned object may not cross two word boundaries. (See the "Internal
Representation of Unpacked Records" section of this chapter for more details about the
rules for record layout.)

3.15.6.4 Ensuring the Same Layout in All Alignment Environments

Alignment attributes can be particularly useful for ensuring that a record receives the same
layout regardless of what alignment environment is in effect due to a compiler directive or
a compiler option.

Suppose, for example, that you want to declare a record that consists of an integer16 fol­
lowed by an integer32, and you want to guarantee that there is no padding in the structure
regardless of the alignment environment. Consider the following declaration:

82 = record

end;

3-72 Data Types

a: integer16;
b: integer32

If the alignment environment is natural alignment, then the layout of 82 type records will
be the layout shown in Figure 3-28. If the alignment environment is word alignment, then
the layout will be that shown in Figure 3-29.

o 1 word'-----~·

a
2

4

6 b

Figure 3-28. Naturally Aligned Structure S2

word -------------....
o

a
2

4 b

Figure 3-29. Word Aligned Structure S2

You can use the aligned attribute to ensure that 82 never receives padding between a
and b:

82 = record
a: integer16;
b: [ALIGNED(l)] integer32

end;

NOTE: You can also use the aligned record data type or the unaligned
record data type to ensure that your records have the same layout
in all alignment environments.

Data Types 3-73

3.1S.6.S Suppressing Informational Messages about Alignment

In general, the compiler assumes that all objects are naturally aligned. If the compiler en­
counters an object that it knows is not naturally aligned, it issues an informational message.
This happens, for example, when the compiler is forced to use word alignment rules for a
record field that is larger than a word, or when a record cannot be aligned because it is
embedded in another aggregate object. The following declarations, for example, will pro­
duce two informational messages:

TYPE
53 record

end;

a: integer16;
b: integer32;
c: double

The messages inform you that band c are not naturally aligned. If you attempt to declare
an array of S3 records, you will receive another informational message telling you that the
array elements are not naturally aligned.

The best way to suppress these messages is to rearrange the record so all the fields are
naturally aligned. If rearrangement is impossible, however, you can suppress these mes­
sages by specifying the alignment and telling the compiler that the objects are not naturally
aligned:

TYPE
53 record

end;

a: integer16;
b: [ALIGNED(l)] integer32;
c: [ALIGNED(l)] double

Note that these alignment specifications do not affect the record's layout-they merely reaf­
firm that the compiler should use word alignment rules rather than natural alignment rules.

NOTE: If you compile with -info 4, you will receive informational mes­
sages even if you specify alignment. See Chapter 6 for more in­
formation about the -info option.

3.1S.6.6 Informing the Compiler that an Object Is Not Naturally Aligned
(Series 10000 Only)

In many instances, the compiler can determine whether an object is naturally aligned.
When the compiler knows that an object is not naturally aligned, it produces code that ac­
cesses the object as if it consisted of separate parts, where each part is naturally aligned.

For example, suppose a program accesses a 4-byte integer that starts on a 2-byte bound­
ary. Because the computer can't access the entire integer at once, the compiler treats the
4-byte integer as if it ~ere composed of two contiguous 2-byte integers, each of which is

3-74 Data Types

naturally aligned. The compiler produces code that accesses each half of the 4-byte object
and then recombines the two halves to obtain the 4-byte integer value.

Obviously, this decomposition and recomposition of objects is less efficient than accessing
the object in a single instruction. Still, it is considerably better than taking a hardware
trap, which is what occurs if the compiler assumes that an object is naturally aligned when,
in fact, the object is not naturally aligned. The trap invokes a software routine to handle
the unaligned data, which results in a significant loss of efficiency.

There are some situations where the compiler cannot determine whether an object is or is
not naturally aligned:

• You declare a pointer to point to a naturally aligned object, and then assign it the
address of an object that is not naturally aligned.

• You pass an argument to a routine by reference.

In both of these cases, the compiler assumes that the object is naturally aligned. If you
know that this is not the case, you should inform the compiler with the aligned· attribute or
with the align function. (See the "Align" listing in Chapter 4 for details about the align
function). This causes the compiler to use the decomposition/recomposition technique
instead of suffering a hardware fault at run time.

NOTE: If you run your Domain Pascal program on a Series 10000 work­
station, you should make sure that the compiler is informed about
any objects that are not naturally aligned. If the compiler as­
sumes that an object is naturally aligned when, in fact, the object
is not naturally aligned, your program will suffer a severe loss of
efficiency when you run it on Series 10000 workstations.

3.1S.6.7 Dereferencing Pointers

When you declare a pointer to an object, the compiler assumes that the object pointed to
is naturally aligned unless you tell it otherwise. Consider the following declarations:

TYPE
rec

VAR

BEGIN

END;

record
int16
int32

end;

integer16;
[ALIGNED (1)] integer32

iptr : Ainteger32;
r: rec

iptr := ADDR (rec.int32)

In this example, the assignment of addr(rec.int32) to iptr will cause a compile-time warn­
ing. The program declared iptr as a pointer to an integer32 type, which is assumed to be
naturally aligned. However, .the address of rec.int32 has been declared to be word
aligned.

Data Types 3-75

You can correct this problem by declaring iptr as pointing to a word aligned integer32
type variable, as follows:

VAR
word_int32 : [ALIGNED (1)] integer32;
iptr : Aword int32

- {iptr is a longword aligned pointer; it points
to a word aligned 4-byte integer}

Note that the above declaration tells the compiler that iptr points to a word aligned
integer32-type variable. It is different from the following declaration, which tells the com­
piler that iptr is a word aligned pointer variable and also that what it points to is a word
aligned integer32-type variable:

VAR
word_int32 : [ALIGNED (1)] integer32;
int_ptr: Aword_int32;
iptr : [ALIGNED(l)] int_ptr;

{iptr is a word aligned pointer variable;
it points to a word aligned 4-byte integer}

3.1S.6.8 Passing Arguments by Reference

The compiler is unable to, determine the alignment of objects passed by reference as argu­
ments to routines. By default, the compiler assumes that such objects are naturally
aligned. Therefore, if you know that an argument passed by reference is not naturally
aligned, you should specify its alignment.

3.15.7 Attribute Inheritance-Extension

Types and variables inherit the device attribute, and in some cases the volatile attribute,
from more primitive data types. If you define a data type in terms of a more primitive data
type declared with device or volatile, the new data type may inherit the attributes of that
more primitive data type. For example, in the following declarations, resource inherits the
volatile attribute from semaphore:

TYPE
semaphore
resource

3-76 Data Types

[VOLATILE] integer;
array[l .. lO] of semaphore;

If you define a record type as volatile or device, all the fields within the record inherit the
attribute. And if you designate anyone field within a record as having the device attribute,
the entire record itself inherits the device attribute. However, the same is not true for a
volatile field within a record; the entire record is not considered volatile just because one
field is declared that way. Consider the following:

TYPE

VAR

lock
queue

end;

[VOLATILE] integer;
RECORD
key : lock;
users : integer;

wait : queue;

In this example, all references to wait.key are volatile, because the lock type is declared
as volatile, but references to wait. users are not volatile. If you want all the fields to be
volatile, insert the following after the record definition:

volque - [VOLATILE] queue;

NOTE: Pointer types do not inherit the device or volatile attributes of
their base type. However, when pointer variables are
dereferenced, the system applies any attributes of their base type.

3.15.8 Special Considerations-Extension

A common mistake is to associate an attribute with a pointer type. For example, we do not
recommend that you use the following declaration:

VAR
iodata : [DEVICE] Ainteger16;

The memory location of iodata is normally on the stack or in the .data section. You don't
want to make the local variable a device; you want to make the local variable a pointer to
a device. Specify the following declarations instead:

TYPE
DevInt [DEVICE] integer;

VAR
iodata ADevInt;

Data Types 3-77

3.16 Attribute Declaration Part-Extension

Domain Pascal supports an attribute declaration part that allows you to define your own
attributes. The syntax for the attribute declaration part is as 'follows:

attribute

identifier] = attribute_name] [, ... , attribute_nameN];

identifierN = attribute_name] [. '" • attribute_nameN]:

An identifier is any valid Domain Pascal identifier. An attribute_name is any predeclared
Domain Pascal attribute (such as aligned (0) or long) or the identifier of an attribute that
you 'created earlier in the attribute declaration part.

For example, the following is a sample attribute declaration part:

ATTRIBUTE
integer_attributes = long, natural;
keyboard_attributes = device;
array_attributes = volatile;
peb_page_attributes = address (16#ff7000), keyboard_attributes;

And here is an example of type and var declaration parts that correspond to the above
attribute declaration part:

TYPE

VAR

intI [integer_attributes] integer32;
int2 [integer_attributes] integerl6;

i,j: intI;
k: int2;
peb_page: [peb_page_attributes] char;
int_array: [array_attributes] ARRAY[I .. IO] of intI;

You can use attributes that you define in an attribute declaration part in any context that
you can use the predeclared attributes that are included in the definition. The compiler
follows the same scope rules for attributes as it does for variables; the compiler evaluates
attributes when they are declared.

---- 88 ------

3-78 Data Types

Chapter 4

Code

This chapter describes the statements, procedures, functions, and operators constituting the
action part of a Domain Pascal program or routine. The beginning of the chapter provides
an overview of what's available. The remainder of the chapter is a Domain Pascal encyclo­
pedia complete with many examples. If you are a Pascal beginner, you should read a good
Pascal tutorial before trying to use this chapter.

The overview of Domain Pascal is divided into the following categories:

• Conditional branching

• Looping

• Mathematical operators

• Input and output

• Miscellaneous functions and procedures

• Systems programming functions and procedures

4.1 Overview: Conditional Branching

Domain Pascal supports the two standard Pascal conditional branching statements-if and
case.

Code 4-1

I

4.2 Overview: Looping

Domain Pascal supports for, repeat, and while-the three looping statements of standard
Pascal. All three looping statements support the next and exit extensions. Next causes a
jump to the next iteration of the loop, and exit transfers control to the first statement fol­
lowing the end of the loop.

4.3 Overview: Mathematical Operators

4-2

Domain Pascal supports all the standard arithmetic, logical, and set operators, as well as
three additional operators for bit manipulation, two additional Boolean operators, and one
additional operator for exponentiation. Table 4-1 lists these operators.

Code

Data Types

Numeric

Integer

Set

Boolean

Non-pointer
types

All types

Table 4-1. Domain Pascal Operators

Operator Meaning

+ Addition
- Subtraction
* Multiplication
I Division (real values)
div Division (integer values)
mod Modulus (returns remainder of

integer division)
** Exponentiation

& Bitwise and
I Bitwise or - Bitwise negation

+ Set union
* Set intersection
- Set exclusion
= Set equality
<> Set inequality
<= First operand is subset of second
>= First operand is superset of second
in First operand is element of second

and Logical and
and then Logical and (short -circuit)
or Logical or
or else Logical or (short-circuit)
not Logical negation

> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

= Equal to
<> Not equal to

NOTE: For the Boolean "short-circuit" operators, if the system can de­
termine the value of the expression after evaluating the first oper­
and, it does not check the second operand.

The exponentiation operator has the following syntax:

mantissa * * exponent

Code 4-3

Table 4-2 shows the meaning of various expressions that use the exponentiation operator.
An important restriction on the exponentiation operator is that you may not use a negative
mantissa with a noninteger exponent.

Table 4-2. Exponentiation Expressions

Expression Meaning

x •• y y Raise x to the power y
x

z Raise y to the power z; x •• y •• z y then raise x to the result x

x·· (y + z) (y + z) Evaluate (y + z); then
x raise x to the result

When evaluating expressions, Domain Pascal uses the order of precedence rules found in
Table 4-3. The operators grouped together have the same precedence. Note that some
operators work as both mathematical operators and as set operators. Nevertheless, the
precedence rules are the same no matter how the operator is used.

Table 4-3. Order of Precedence in Evaluating Expressions

Operator Order of Precedence

not highest precedence

** h

& • / div
mod and

r + - or

= <> ><
>= <=
in

and then ,if
or else lowest precedence

4-4 Code

Domain Pascal permits the mixing of real and integer types in arithmetic expressions. For
such mixed operations, Domain Pascal promotes the integers to reals before performing the
operation.

4.3.1 Expansion of Operands

The compiler computes operands smaller than 32 bits with 32 bits of precision when neces­
sary to achieve correct arithmetic. This means integer16 operands sometimes are expanded
to integer32 before calculations. These data expansions produce more accurate results;
however, the compiler tries to avoid the extra code produced by data expansion.

4.3.2 Predeclared Mathematical Functions

In addition to the mathematical operators, you can use any of the predeclared mathemati­
cal functions listed in Table 4-4. Note that although the arctan, cos, exp, In, sin, and
sqrt functions permit integer arguments, the compiler converts an integer argument to a
real number before calculating the function. Therefore, when possible, it is better to supply
real, rather than integer, arguments to these functions.

Code 4-5

Table 4-4. Mathematical Functions

Function Argument(s) Result Meaning

abs(x) integer or real same type as x Absolute value of x.

arctan (x) integer or real real Arctangent of x.

arshft(x,n) both are integer integer Shifts the bits in x to the right n
places. Preserves the sign of x.

cos (x) integer or real real Cosine of x.

exp(x) integer or real real Raises exponential function e to
the x power.

In (x) integer or real real Natural log of x; x >0

)shft(x,n) both are integer integer Shifts the bits in x to the left n places.

odd (x) integer boolean True if x is an odd value.

round (x) real integer Rounds x up or down to nearest
integer.

rshft(x,n) both are integer integer Shifts the bits in x to the right
n places.

sin (x) integer or real real Sine of x.

sqr(x) integer or real same type as x Square of x.

sqrt(x) integer or real real Square root of x.

trunc(x) real integer Truncates the fractional part of x
(rounds x towards zero).

xor(x,n) both are integer integer Bit exclusive or.

4.3.3 Mixing Signed and Unsigned Operands in Expressions

Although Domain Pascal does not have an unsigned type, it does support unsigned ranges.
(See Section 3.4 for further information on unsigned types.)

Mixing signed and unsigned integer operands is tricky for the following operations:

• >

• >=

• <

• <=

4-6 Code

• min

• max

• div

• mod

The compiler interprets these operations as signed except under the following circum­
stances:

• Both operands are unsigned run-time values.

• One operand is an unsigned run-time value and the other is a constant in the pos­
itive subrange 0 .. 2147483647.

For these two cases, the compiler uses unsigned operations.

You can use a type transfer to force the desired type of operation if it does not result from
the above rules. (See the section on "Type Transfer Functions" later in this chapter for
further information.) The following code fragment illustrates the use of type transfer for
operations involving mixed signedness:

TYPE
u_type O .. 2147483647;

VAR
s32 integer32;
u32 u_type;
a integer32;

a .- s32 DIV integer32(u32); { Compiler generates a signed
divide. }

{ OR }

a .- u_type(s32) DIV u32; { Compiler generates an unsigned
divide. }

Code 4-7

4.4 Overview: 1/0

Domain Pascal supports the I/O procedures described in Table 4-5. For details on these
routines, consult the encyclopedia later in this chapter and Chapter 8.

Name

close

eof

eoln

find

get

open

page

put

read

readln

replace

reset

rewrite

write

writeln

Table 4-5. Predeclared I/O Procedures

Action

Closes a file.

Tests whether the stream marker is pointing to the end of the file.

Tests whether the stream marker is pointing to the end of a line.

Sets the stream marker to the specified record.

Reads from a file.

Opens a file for future access.

Inserts a formfeed (page advance) into a file.

Writes to a file.

Reads information from the specified file (or from the keyboard) into
the specified variables. After reading the information, read positions
the stream marker so that it points to the character or component im­
mediately after the last character or component it read.

Similar to read except that after reading the information, readln posi­
tions the stream marker so that it points to the character or component
immediately after the next end-of-line character.

Substitutes a new record component for an existing record.

Specifies that an open file be open for reading only.

Specifies that an open file be open for writing only, or tells the
system to open a temporary file.

Writes the specified information to the specified file (or to the screen).

Same as write except that writeln always appends a linefeed to its
output.

4.5 Overview: Miscellaneous Routines and Statements

Table 4-6 lists several Domain Pascal elements that do not fit neatly into categories.

4-8 Code

Element

addr

append

chr

ctop

discard

dispose

exit

firstof

goto

in_range

lastof

max

min

new

next

nil

ord

pack

pred
!

ptoc

return

sizeof

substr

succ

type transfer
functions

unpack

with

Table 4-6. Miscellaneous Elements

Action

Returns the address of the specified . variable.

Concatenates two or more strings.

Finds the character whose ISO Latin-l value equalshe specified number.

Converts a C-style string into a Domain Pascal variable-length string.

Explicitly discards a computed value.

Deallocates the storage space that a dynamic record was using.

Transfers control to the first statement following a for, while, or repeat loop.

Returns the first possible value of a type or a variable.

Unconditionally jumps to the first command following the specified label.

Tells you if the specified value is within an enumerated variable's defined range.

Returns the last possible value of a type or a variable.

Returns the larger of two expressions.

Returns the smaller of two expressions.

Allocates space for storing a dynamic record.

Transfers control to the test for the next iteration of a for, while, or repeat loop.

A special pointer value that points to nothing.

Finds the ordinal value of a specified integer, Boolean,enumerated, or char type.

Copies unpacked array elements to a packed array.

Finds the predecessor of a specified value.

Converts a Domain Pascal variable-length stringinto a C-style string.

Causes program control to jump back to the calling procedure or function.

Returns the size (in bytes) of the specified data type.

Extracts a substring from a string.

Finds the successor of a specified value expression in the code portion of your
program.

Permits you to change the data type of a variable or expression in the code
portion of your program.

Copies packed array elements to an unpacked array.

Lets you abbreviate the name of a record. With is standard, but Domain Pascal
includes an extension that supports a name tag.

Code 4-9

4.6 Overview: Systems Programming Routines

Several Domain Pascal routines are available for systems programmers' use. Table 4-7 lists
these routines. Because only a few programmers will need to use these routines, they are
not described in the encyclopedia section that follows. Instead, they appear in Appendix E.

Table 4-7. Systems Programming Routines

Routine Action

disable Turns off the interrupt enable in the hardware status register.

enable Turns on the interrupt enable in the hardware status register.

set_sr Saves the current value of the hardware status register and then
inserts a new one.

4.7 Encyclopedia of Domain Pascal Code

The remainder of this chapter contains an explanation of the concepts and keywords that
you can use in the action part of a Domain Pascal program or routine. These items are
listed alphabetically.

The concepts that we include are as follows:

• Array operations

• Bit operators

• Compiler directives

• Expressions

• Pointer operations

• Record operations

• Set operations

• Statements

• Type transfer functions

• Variable-length string operations

4-10 Code

The keywords that we include are:

abs cos for new ptoc sqr
addr ctop get next put sqrt
align discard goto nil read, readln substr

and dispose if not repeat/until succ
and then div in odd replace trunc

append end in_range open reset unpack

arctan eof lastof or return while

arshft eoln In ord rewrite with

begin exit Ishft or else round write, writeln

case exp max pack rshft xor

chr find min page sin
dose firstof mod pred sizeof

Code 4-11

Abs

Abs Returns the absolute value of an argument.

FORMAT

abs(number) {abs is a function.}

ARGUMENTS

number Any real or integer expression.

FUNCTION RETURNS

The abs function returns a real value if number is real and an integer value if number is
an integer.

DESCRIPTION

The abs function returns the absolute value of the argument. The absolute value is the
number if it is nonnegative, and the negative of the number if it is negative. Note that
number cannot be -2147483648 (which is the lowest negative integer).

EXAMPLE

program abs example;
{ This prog;am displays the absolute values for two numbers }
VAR

x
Y

BEGIN

INTEGER;
REAL;

x := -3;
y := -456.78;
WRITELN(x,Y);

END.

USING THIS EXAMPLE

x := ABS(x);
y := ABS(y);

If you execute the sample program named abs_example, you get the following output:

3 4. 567800E+02

4-12 Code

Addr

Addr Returns the address of the specified variable. (Extension)

FORMAT

addr(x) {addr is a function.}

ARGUMENTS

x

FUNCTION RETURNS

Can be a variable declared as any data type except as a procedure or
function data type having the internal attribute. x can also be a string
constant but it cannot be a constant of any type other than string.

The addr function returns an univ _ptr value. (Chapter 3 describes the univ _ptr data
type.)

DESCRIPTION

Use addr to return the address at which variable x is stored. If x is a variable-length
string, addr returns the address of the entire record, not the address of the string compo­
nent. Addr is particularly useful with variables defined as pointers to functions or proce­
dures.

Using addr can prevent some compiler optimizations. If you apply addr to a variable that
is local to a routine, and the variable is not a set, record, or array, you do not get op­
timizations and register allocation for that variable or any expressions using the variable.
This means the routine's code might be larger and slower than it otherwise would be.

Applying addr to a variable is equivalent to declaring the variable volatile. See Chapter 3
for more information on volatile.

Refer to the "Pointer Operations" listing later in this chapter for an example of addr.

Code 4-13

Addr

NOTE: The compiler issues a warning if you assign the result of addr to a
pointer type variable that expects an alignment greater than the
alignment of the addr result. For example,

TYPE
natural _integer = [natural] integer32;
rec = record

int16 integer16;
int32 [ALIGNED (1)] integer32;
end;

VAR
iptr "'natural - integer;
r: rec

BEGIN
iptr := ADDR (r.int32)

END;

In this example, the assignment of addr(r.int32) to iptr causes a
compile-time warning. The code in the example declares iptr as
a pointer to a naturally aligned integer32 type, but assigns to it the
address of a word-aligned object, r.int32. (See the "Internal
Representation of Records" and" Alignment" sections of Chap­
ter 3 for further details about alignment.)

EXAMPLE

Program addr_example;
{This program displays the contents stored at an address returned}
{by the addr function}
TYPE

ptr_to_real "'real;
VAR

y, y2
ptr_to_y

BEGIN

real;
ptr_to_real;

END.

4-14 Code

write('Enter a real number -- ');
readln(y);
ptr to y := ADDR(y);

- - {Set ptr_to_y to the address at which y is stored. }
y2 := ptr_to_y"';

{ Set y2 to the contents stored at y's address; }
{ i.e., set y2 equal to y. }

writeln(y2);

USING THIS EXAMPLE

Following is a sample run of the program named addr_example:

Enter a real number -- 5.3
5.300000E+OO

Addr

Code 4-15

Align

Align Causes the compiler to copy an expression that is being passed as a parameter. (Extension)

FORMAT

align (expression); {align is a function.}

ARGUMENTS

expression

FUNCTION RETURNS

Any valid Domain Pascal expression that is being passed as an input
parameter to a routine.

The align function returns a correctly aligned copy of expression.

DESCRIPTION

The align function tells the compiler to make a copy of an expression passed as an in pa­
rameter to an external routine. The alignment of the copy matches the alignment specified
for the formal parameter. The compiler uses the copy as the actual parameter when the
external routine is called.

The align function is useful for making sure that expressions are correctly aligned when
they are passed as arguments to functions and procedures. An expression is correctly
aligned if its alignment matches the alignment specified for it in the formal parameter defi­
nition.

The main use of the align function is to pass a record field that is not naturally. aligned to
a routine that expects the parameter to be naturally aligned. This use is illustrated in the
example.

Although correct alignment for parameters passed by reference generally produces at least
somewhat faster executable code on all Apollo workstations, the improvement is very sig­
nificant on Series 10000 workstations. If you run your program on a Series 10000 work­
station and the compiler assumes that an object is naturally aligned when in fact, it is not
naturally aligned, your program will suffer a severe loss of efficiency.

4-16 Code

Align

EXAMPLE

PROGRAM align example;
{This program-shows how to use the ALIGN function, a Domain Pascal }
{extension that causes parameters passed as IN parameters to external }
{functions to be aligned according to the expectations of the called }
{routine. }
{NOTE: You must also compile the add_em Pascal program and bind it }
{ with align_example to get an executable file. }
TYPE

rec
integer16;

record
short_num
long_num

end;
integer32; {this field is not naturally aligned}

VAR
sum: rec;
1,J : integer32;

FUNCTION add_em (IN x

BEGIN
with sum do

begin

y, z

short_num := 7;
long_num .- 3;

end;
i := 1;
j := 1942;

integer32;
integer32) :integer32; extern;

write('The sum of the numbers is ');
writeln(add_em(ALIGN(Sum.long_num), i,j»;

{use the ALIGN function to make sure that sum.long_num is }
{naturally aligned when it is passed to the add_em function}
{If you omit the ALIGN function, you get a warning from }
{the compiler. }

END.

MODULE add_em;
{This function is called by the align_example program}
FUNCTION add_em (IN x integer32;

y,z : integer32) : integer32;
BEGIN

add_em:= x+y+z;
END;

These programs are available online and are named align_example and add_em. A sam­
ple run of the program is shown below:

The sum of the numbers is 1946

Code 4-17

And, And Then

I And, And Then Calculate the logical and of two Boolean arguments.

• FORMAT

•

•

x and y {and is an operator.}
x and then y {and then is an operator.}

ARGUMENTS

x, y Any Boolean expressions.

OPERATOR RETURNS

The result of an and or an and then operation is a Boolean value.

DESCRIPTION

Sometimes and is called Boolean multiplication. Use it to find the logical and of expres­
sions x and y. Here is the truth table for and:

x y Result

true true true

true false false
false true false

false false false

(See also the listings for the logical operators or and not later in this encyclopedia).

4-18 Code

NOTE: Some programmers confuse and with &. & is a bit operator; it
causes Domain Pascal to perform a logical and on all the bits in
its two arguments. For example, compare the following results:

the result of (true and false) is false
the result of (75 & 15) is 11

(Refer to "Bit Operators" later in this encyclopedia.)

And, And Then

The Boolean operator and then is a Domain extension to standard Pascal. You can use
and then in any statement where you use and in standard Pascal. The choice between
and and and then, however, affects the run-time evaluation of a statement.

When and then appears between two Boolean operands in an expression, the system be­
gins evaluating the operands in the order in which they appear. If the first operand is
false, the system does not evaluate the second. If one operand is false, then the entire
expression is false.

Hence, and then guarantees "short-circuit" evaluation. That is, at run time, the system
evaluates an operand only if necessary.

For example, in the statement

IF boolean 1 AND THEN boolean_2
THEN ...

the system first evaluates boolean_I. If boolean_l is false, the system does not evaluate
boolean_2. In this statement, the operands boolean_l and boolean_2 can be any valid
Pascal Boolean expressions.

The operator and then can be more efficient than and. For example, in the statement

IF boolean 1 AND boolean_2
THEN ...

the system may evaluate both boolean_l and boolean_2 to test if the statement is true.
Also, there is no guarantee that the system will evaluate the two operands in the order in
which they appear.

The and then operator helps you avoid nested constructions. For example, compare the
standard Pascal code on the left with the equivalent Domain Pascal code on the right:

Standard Pascal

WHILE c1 DO
WHILE c2 DO

81;

Domain Pascal

WHILE c1 AND THEN c2 DO
81;

In this example, the standard Pascal code contains one while loop nested within another.
The Domain Pascal code, however, contains only one loop.

Code 4 19

I
And, And Then

The following example illustrates how to avoid referencing a NIL pointer through the use
of the and then operator:

WHILE P <> NIL AND THEN NOT pA.flag DO
p : = p A . next;

EXAMPLE

The following example uses an and operation to calculate the gravitational force between
two objects.

Program and_example;

CONST
g = 6.6732e-11;

VAR
mass!, mass2, radius, force: single;

BEGIN
write('This program finds the gravitational force between two ');
writeln('objects.');
write('Enter the mass of the first object (in Kg) -- ');
readln(mass1);
write('Enter the mass of the second object (in Kg) -- ');

readln(mass2);
write('Enter the dist. between their centers (in M) -- ');
readln(radius);
if (mass! > 0.0) AND (mass2 > 0.0)

then force := (g * mass! * mass2) / sqr(radius)
else begin

writeln('The data you have entered seems inappropriate');
return;

end;
writeln('The force between these two objects is
END.

USING THIS EXAMPLE

This program is available online and is named and_example.

4-20 Code

force:9:7, ' N');

Append

Append Concatenates two or more strings. (Extension)

FORMAT

append(dst_string, sl, s2, s3, s4, sS, s6, s7, s8, s9); {append is a procedure.}

ARGUMENTS

sl

s2 .. s9

DESCRIPTION

A variable-length character string.

A variable-length string, character array, or character-string constant that
will be appended to the destination string.

Optional arguments. Up to nine variable-length strings, character arrays,
and character-string constants may be appended to the destination string.

append builds a destination string by concatenating the destination string and up to nine
additional strings.

An error trap is generated if concatenating the source string(s) with the destination string
results in a string that is larger than the maximum size of the destination string.

EXAMPLE

PROGRAM append_example;

VAR
str1
str2
str3

varying [100] of char;
varying [20] of char;
array[l .. 20] of char;

BEGIN

END.

str1 .- 'one ... ';
str2 .- 'two ... ';
str3 .- 'three ... ';
append (str1, str2, str3, 'four');
writeln(str1);

Code 4-21

Append

USING THIS EXAMPLE

Executing this program, named append_example, results in the following output:

one ... two ... three ... four

Note that the fixed-length array, str3, is padded with spaces, whereas the variable-length
strings are not padded. Also note that the first parameter must be a variable-length string.

4-22 Code

Arctan

Arctan Returns the arctangent of a specified number.

FORMAT

arctan (number) {arctan is a function.}

ARGUMENTS

number Any real or integer expression.

FUNCTION RETURNS

The arctan function returns a real value for the angle in radians.

DESCRIPTION

The arctan function returns the arctangent (in radians) of number. The arctangent of a
number has the following relationship to the tangent:

y = arctan(x) means that x = tan(y)

Note that Pascal does not support a predeclared tangent function. However, you can find
tangent(x} by dividing sin(x} by cos(x}.

Code 4-23

Arctan

EXAMPLE

PROGRAM arctan example;
{ This progr;m demonstrates the ARCTAN function. }

CONST
degrees_per_radian

VAR
q, answer_in_radians
answer_in_degrees

BEGIN
q := 2.0;

180.0 / 3.14159;

REAL;
INTEGER16;

{First, find the arctangent of 2.0 in radians. }
answer_in_radians := ARCTAN(q);
writeln('The arctan of " q:5:3, ' is', answer_in_radians:6:3,

, radians');

{Now, convert the answer to degrees. }
answer_in_degrees := round(answer_in_radians * degrees_per_radian);
writeln('The arctan of " q:5:3, ' is " answer_in_degrees:l,

, degrees');
END.

USING THIS EXAMPLE

If you execute the sample program named arctan_example, you get the following output:

The arctan of 2.000000E+00 in radians is 1.107149E+00
The arctan of 2.000000E+00 in degrees is 63

4-24 Code

Array Operations

Array Operations

Chapter 3 explains how to declare and initialize an array. In this listing, we explain how to
use arrays in the code portion of your program. See "Variable-Length String Operations"
in this chapter for information about accessing varying arrays of chars.

ASSIGNING VALUES TO ARRAYS

To assign a value to an array variable, you must supply the following information:

• The name of the array variable.

• An index expression enclosed in brackets. The value of the index expression must
be within the declared subrange of the index type.

• A value of the component type.

For example, the following program fragment assigns values to four arrays:

TYPE
{elements is an enumerated type.}
elements (H, He, Li, Be, B, C, N, 0, FI, Ne);
student = record

name: packed array [1 .. 50] of char;
id integer16;
class: (freshman, sophomore, junior, senior);

end;

VAR
{Here are four array declarations.}
test_data array[1 .. 100] of INTEGER16;
atomic_weights array[H .. Be] of REAL;
lie_test array[1 .. 4, 1 .. 2] of BOOLEAN; {2-dimensional array}
enrollment array[1 .. 500] of student;

BEGIN
test_data [37] := 9018;
atomic_weights [He] := 4.0;
lie_test [3, 2] := true;
enrollment[30].name .- 'Betsy Ross' ;
enrollment[30].id := 8245;
enrollment [30] .class .- senior;

Code 4-25

I

I

I

Array Operations

4-26

There are a few exceptions to the rule that you must supply an index expression.

The first exception is that you can assign a string to an array of char variable without
specifying an index expression; for example, consider the following assignments to greeting
and farewell:

CONST
hi 'aloha';

VAR
greeting, farewell array[1 .. 12] of CHAR;

BEGIN
greeting : = hi;
farewell := 'a bientot';

The only restriction on this kind of assignment is that the number of bytes in the string
must be less than or equal to the declared number of declared components in the array.
For example, you cannot assign the string 'auf wiedersehen' to farewell because the string
contains 15 bytes and the array is declared as only 12 bytes. If you do try that assignment,
the compiler will give you the following error message:

Assignment statement expression is not compatible with the
assignment variable.

There is a second exception to the rule that you must specify an index expression when
assigning a value to an array. The exception is that you can assign the value of one array
to another array if both arrays are char arrays that contain the same number of bytes. For
example, in the following program fragment, a, b, and e are the same size, while c and d
are uniquely declared:

CONST

VAR

BEGIN

Code

quote = 'Ottawa!';

a
b
c
d
e

a .-
b .-
e .-
c .-

array[1 .. 20] of CHAR;
array[1 .. 20] of CHAR;
array[1 .. 21] of CHAR;
array[1 .. 19] of CHAR;
array[21 .. 40] of CHAR;

quote; {Assign the string 'ottawa!' to array a. }
a; {This is a valid assignment. }
a: {This is a valid assignment. }
a; {WRONG!}

{This is not a valid assignment because a and c }
{ have different declared lengths. }

Array Operations

d .- a; {WRONG!}
{This is not a valid assignment because a and d }
{ have different declared lengths. }

The assignment b := a causes Domain Pascal to assign all components of array a to the
corresponding indices in array b; that is, b := a is equivalent to the following 20 assign­
ments:

b[l] .- a[l];
b [2] . - a [2] ;

b[20] .- a[20];

USING ARRAYS

NOTE: In standard Pascal, before assigning a string to an array, you must
explicitly pad the string to the length of the array. Domain Pascal
automatically pads with spaces any string of fewer than 4096 char­
acters.

You can specify an array component wherever you can specify a component variable of the
same data type. In other words, if the compiler expects a real number, you can specify any
real expression including a component of an array of real numbers.

Code 4-27

I

Array Operations

EXAMPLE

PROGRAM array_example;

{This simple example reads in five input values, assigns the values to}
{elements of an array, and then finds their mean. }

CONST

VAR

BEGIN

a : arraY[l .. number_of_elements] of single;
running_total : single := 0.0;
n : integer16;

for n := 1 to number_of_elements do
begin

write('Enter a value -- ');
readln(a[n]);

end;

for n := 1 to number_of_elements do
running_total := running_total + a[n];

writeln(chr(lO) ,'The mean is " running_total/number_of_elements:3:1);

END.

USING THIS EXAMPLE

Following is a sample run of the program named array_example:

Enter a value 4.3
Enter a value 10.3
Enter a value 9.5
Enter a value 6.2
Enter a value 1.5

The mean is 6.4

4-28 Code

Arshft

Arshft Shifts the bits in an integer to the right by a specified number of bits. Preserves the sign of
the integer. (Extension)

FORMAT

arshft(num, sh) {arshft is a function.}

ARGUMENTS

num, sh Must be integer expressions. sh should be nonnegative.

FUNCTION RETURNS

The function returns an integer value.

DESCRIPTION

Arshft does an arithmetic right shift of an integer. The arshft function tells the compiler
to preserve the sign bit of num and shift the other bits sh positions to the right. The ex­
pression num can be any integer expression smaller than 32 bits.

Say, for example, num is a 16-bit integer and the result of the function is to be stored in
a 16-bit integer variable. In this case, arshft expands num to a 32-bit integer, performs
the shift, and then converts it back to a 16-bit integer.

First examine how arshft shifts a positive integer. Consider the effect of arshft on the
16-bit positive integer + 100 in the following table:

unshifted
ARSHFT(+100, 1)
ARSHFT(+100,2)
ARSHFT(+100,3)

0000000001100100
0000000000110010
0000000000011001
0000000000001100

+100
+50
+25
+12

Notice three things in the preceding table. First, the sign bit (the leftmost bit) never
changes. Second, notice that the bits move to the right. Third, notice that the bits do not
wrap around from right to left; the absolute value always gets smaller.

Code 4-29

Arshft

Now, examine how arshft shifts a negative integer. Consider the effect of arshft on the
16-bit negative integer -100 in the following table:

unshifted
ARSHFT(-100,1)
ARSHFT(-100,2)
ARSHFT(-100,3)

1111111110011100
1111111111001110
1111111111100111
1111111111110011

-100
-50
-25
-13

In contrast to the preceding table, notice that arshft fills the leftmost bits with ones rather
than zeros as the rightmost bits are shifted off the right end of the number.

Results are unpredictable if sh is negative.

EXAMPLE

PROGRAM arshft_example;

{ This program compares ARSHFT with RSHFT. }

VAR
integer32 .- 0;

BEGIN
write('Enter a positive or negative integer -- ');
readln(original_number);

for spaces_to_shift .- 1 to 5 do
BEGIN

writeln;
writeln('When shifted " spaces_to_shift:l, , spaces.');

r := RSHFT(Original_number, spaces_to_shift);
writeln(' The rshft result is " r:l);

ar := ARSHFT(Original_number, spaces_to_shift);
writeln(' The arshft result is " ar:l);

END;
END.

USING THIS EXAMPLE

This program is available online and is named arshft_example.

4-30 Code

Begin

Begin Marks the start of a compound statement.

FORMAT

begin is a reserved word.

DESCRIPTION

Begin and end establish the limits of a sequence of Pascal statements. A program must
contain at least as many ends as begins. (Note that a program can contain more ends then
begins.) You must use a begin/end pair to indicate a compound statement. (Refer to the
"Statements" listing later in this encyclopedia.)

EXAMPLE

{This program does very little work, but does have lots of BEGINS}
{and ENDs. }

TYPE
student = record

age : 6 .. 12;
id : integer16;

end; {student record definition}
VAR

x integer32;

PROCEDURE do_nothing;
BEGIN {do_nothing}
writeln('You have triggered a procedure that does absolutely nothing.');
writeln('Though it does do nothing with elan.').
END; {do_nothing}

FUNCTION do_next_to_nothing(var y
BEGIN {do_next_to_nothing}

do_next_to_nothing := abs(y);
END; {do_next_to_nothing}

integer32) integer32;

Code 4-31

Begin

BEGIN {main procedure}
write('Enter an integer -- ');
if x < 0

then BEGIN

readln(x);

writeln('You have entered a negative number!!!');
writeln('Its absolute value is do_next_to_nothing(x):l);

END
else if x = 0

then BEGIN

else

writeln('You have entered zero');
do_nothing;

END

writeln('You have entered a positive number!! !');
END. {main procedure}

USING THIS EXAMPLE

This program is available online and is named begin_end_example.

4-32 Code

Bit Operators Calculate and, or, and not on a bit-by-bit basis. (Extension)

FORMAT

opJ & op2
opJ lop2
-opJ

ARGUMENTS

opJ, op2

OPERATOR RETURNS

{& (an ampersand) is bit and.}
{I (an exclamation point) is bit or.}
r (a tilde) is bit not.}

Must be integer expressions.

All three operators return integer results.

DESCRIPTION

Bit Operators

Domain Pascal supports three bit operators, all of which are extensions to standard Pascal.
The operators perform operations on a bit-by-bit level using the following truth tables:

Table 4-8. Truth Table for & (Bitwise And Operator)

& (and)

bit x bit x bit x of
of opt of op2 result

0 0 0
0 1 0
1 0 0
1 1 1

Code 4-33

Bit Operators

Table 4-9. Truth Table for ! (Bitwise Or Operator)

! (or)

bit x bit x bit x of
of opl of op2 result

0 0 0
0 1 1
1 0 1
1 1 1

Table 4-10. Truth Table for - (Bitwise Not Operator)

- (not)

bit x bit x of
of opl result

0 1

1 0

Don't confuse these bit operators with the logical operators. Bit operators take integer op­
erands; logical operators take Boolean operands.

In addition to the three bit operators, Domain Pascal supports the following bit functions:
Ishft, rshft, arshft, and xor. All of these functions have their own listings in the encyclo­
pedia.

4-34 Code

NOTE: If one of the operators is declared as integer32, and the other
operator is declared as integerl6, Domain Pascal extends the in­
tegerl6 to an integer32 before calculating the answer.

When performing these bitwise operations, Domain Pascal treats
the sign bit just as it treats any other bit.

EXAMPLE

PROGRAM bit_operators_example;

{ This program demonstrates bitwise AND, OR, and NOT. }

CONST
{ The 2# prefix specifies a base 2 number. }

x = 2#0000000000001010; {10}
y = 2#0000000000010111; {23}

VAR
resultl, result2, result3 integer16;

BEGIN

Bit Operators

resultl .- x & y;
result2 .- x ! y;
result3 .- -x;

writeln(x:l, ' AND " y:l, ' = " resultl:l);
writeln(x:l, ' OR " y:l, ' = " result2:1);
writeln('NOT " x:l, ' = " result3:1);

END.

USING THIS EXAMPLE

If you execute the sample program named bit_operators_example, you get the following
output:

10 AND 23 = 2
10 OR 23 = 31
NOT 10 = -11

Code 4-35

Case

Case A conditional branching statement that selects among several statements based on the value of
an ordinal expression.

FORMAT

There are two different forms of the case statement. Here, we describe the use of case in
the body of your program. The other use of case is in the variable or type declaration por­
tion of the program. (See the "Variant Records" section in Chapter 3 for details on this
use.)

Case takes the following syntax:

case expr of

end;

constant list 1 : stmnt 1 ;

constantlistN : stmntN;
otherwise stmnt _list;

{case is a statement.}

ARGUMENTS

expr

constantlist

stmnt

stmnt_list

4-36 Code

Any ordinal expression (variable, constant, etc.) The ordinal types are
integer, Boolean, char, enumerated, and subrange. You cannot specify an
array as an expr, though you can specify an element of an array (assum­
ing the element has an ordinal type). Also, you cannot specify a record,
though you can specify a field of the record (assuming the field has an
ordinal type).

One or more values (separated by commas) having the same data type as
expr.

A simple statement or a compound statement (refer to the "Statements"
listing later in this encyclopedia).

One or more statements associated with the optional otherwise clause.
(The otherwise clause tells the system to execute stmnt_list if expr
matches none of the constants in any of the constantlists.) The stmnt_list
differs from a compound statement in that you do not have to bracket
the stmnt_list with a begin/end pair (though doing so does not cause an
error) .

Case

DESCRIPTION

The case statement performs conditional branching. It is very useful in situations involving
a multi-way branch. When the value of expr equals one of the constants in a constant list ,
the system executes the associated stmnt.

Note that case and if/then/else serve nearly identical purposes. The differences between
case and if/then/else are:

• Case can compare only ordinal values. If/then/else can compare values of any
data type.

• The system can sometimes execute a case statement faster than an equivalent iff
then/else statement. That's because the Domain Pascal compiler sometimes trans­
lates a case statement into a dispatch table and always translates an if/then/else
statement into a series of conditional tests.

Also, note that a case statement is often more readable than an if/then/else statement.
For instance, compare the following if/then/else statement to its equivalent case statement:

IF grade = 'A' THEN
write('Excellent')

ELSE IF grade = 'B' THEN
wri te ('Good')

ELSE IF grade = 'c' THEN
wri te (' Average')

ELSE IF grade = '0' THEN
wri te (' Poor')

ELSE IF grade = 'F' THEN
write('Failing');

Otherwise-Extension

CASE grade OF

end;

'A' write('Excellent');
'B' write('Good');
'c' write('Average');
'0' write('Poor');
'F' write('Failing');

As an extension to the case statement, Domain Pascal supports the otherwise clause. The
otherwise clause tells the compiler to execute stmnt_list if expr matches none of the con­
stants in any of the constant lists . For example, you can write the preceding case example
as follows. Notice that you do not put a colon {:} after the keyword otherwise.

CASE grade OF
'A' write('Excellent');
'B' write('Good');
'c' write('Average');
'0' write('Poor');
OTHERWISE write('Failing');

end;

Code 4-37

Case

As mentioned earlier, the begin/end pair is optional in an otherwise clause. Therefore,
these two case statements are equivalent:

CASE number OF
1, 2, 3 : writeln('Good');
OTHERWISE writeln('Great.');

writeln('Encore.');
end;

CASE number OF
1,2, 3 : writeln('Good');
OTHERWISE begin

end;

writeln('Great');
writeln('EnCore');
end;

EXAMPLE

PROGRAM case_example;
{ This program demonstrates the use of the case statement }
VAR

sale
price

char;
boolean;
array[l .. 5] of char;

BEGIN
write('Is whole wheat bread on sale today? -- ');
readln(a_letter);
CASE a letter OF

'y', 'Y'
'n', 'N'

OTHERWISE

end; {CASE}
if sale then

sale := true;
begin

sale := false;
writeln('Remember to tell them it"s organic.');

end;
begin

end;

writeln('You have made a mistake.');
writeln('The correct. response was YES or NO');
writeln('please rerun the program');
return;

price .- '$1.99'
else

price .- '$2.99';
writeln('Mark it as' price:5);

END.

USING THIS EXAMPLE

This program is available online and is named case_example.

4-38 Code

Chr

Chr Returns the character whose ISO Latin-l value corresponds to a specified ordinal number.

FORMAT

chr(number) {chr is a function.}

ARGUMENTS

number An integer.

FUNCTION RETURNS

The chr function returns a value with the char data type.

DESCRIPTION

The chr function returns the character that has an ISO Latin-l value equal to the value of
the low eight bits of number. Appendix B contains a table of ISO Latin-l values.

Chr produces a character with the bit pattern

number & 16#FF

Usually, number is between 0 and 127, in which case the character that chr returns is sim­
ply the character that has the ISO Latin-1 value of number. If number is greater than 127,
chr returns the character having the ISO Latin-l value of

number MOD 256

See the mod listing later in this encyclopedia.

Note that the ord function is the inverse of chr when ord's argument type is char. (See
the ord listing later in this encyclopedia.)

Code 4-39

Chr

EXAMPLE

PROGRAM chr example;
{ This program demonstrates three uses for the CHR function.

VAR
capital_letter: 65 .. 90;
y : CHAR;
age: 10 .. 99;
c_array: array[1 .. 2] of char;

BEGIN

}

{ First, we'll use CHR to convert an integer to its ISO Latin-1 value.}
write('Enter an integer from 65 to 90 -- ');
readln(capital_letter);
y := CHR(capital_letter);
writeln(capital_letter:1, corresponds to the' y:1, ' character');
writeln;

{ Second, we'll use CHR to ring the node bell.
write(chr(7»;

}

{ The graphics primitive function gpr_$text writes character arrays}
{ to the display. But suppose you want gpr_$text to write an }
{ integer. In order to accomplish this task, you would write a }
{ routine similar to the following. which converts a 2-digit integer}
{ into a 2-character array. Note that 48 is the ISO Latin-1 value }
{ for the '0' character, 49 for the '1' character, and so on up to }
{ 57 for the '9' character. }
write('Enter an integer from 10 to 99 -- '); readln(age);
c_array[l] := CHR«age DIV 10) + 48);
c_array[2] := CHR«age MOD 10) + 48);
writeln('The first digit is " c_array[l]:l);
writeln('The second digit is c_array[2]:1);
writeln('The entire array is " c_array);

END.

USING THIS EXAMPLE

Following is a sample run of the program named chr_example:

Enter an integer from 65 to 90 -- 83
83 corresponds to the S character

Enter an integer from 10 to 99 -- 71
The first digit is 7
The second digit is 1
The entire array is 71

4-40 Code

Close

Close Closes the specified file. (Extension)

FORMAT

close (filename) {close is a procedure.}

ARGUMENTS

filename A file variable.

DESCRIPTION

Use the close procedure to close the file filename that you opened with the open proce­
dure. By closing, we mean that the operating system unlocks it. When a program termi­
nates (naturally or as a result of a fatal error), the operating system automatically closes all
open files. So the close procedure is optional.

You cannot close the predeclared files input and output, but if you try, Domain Pascal
does not issue an error.

If filename is a temporary file, close (filename) deletes it.

Please see Chapter 8 for an overview of I/O.

EXAMPLE

NOTE: For permanent text files, your program should issue a writeln to
the file just before closing it in order to flush the file's internal
output buffer. If you don't include that writeln, the last line of
the file may not be written.

PROGRAM close_example;
{ This program demonstrates the CLOSE procedure. }

CaNST
pathname = 'primates';

VAR
class
name
status

text; {a file variable}
array[l .. 20] of char;
integer32;

Code 4-41

Close

begin
writeln('This program writes data to file "primates"');

open(class, pathname, 'NEW', status);
if status = 0 then

rewrite(class)
else

return;

{Open a file for writing.}

writeln('Enter the names of the children in your class -- ');
writeln('The last entry should be "end"');
repeat

read In (name) ;
if name <> 'end' then

writeln(class, name)
else

exit;
until false;

CLOSE (class) ;

{ }

{Close the file for writing.}

{ Execute some time-consuming routines that do not access 'primates'. }
{ }

{Now, re-open the file for reading.}
open(class, pathname, 'OLD', status);
reset(class);

writeln;
writeln('Here are the names you entered:');
repeat

readln(class, name);
writeln(name) ;

until eof(class);

CLOSE(class);
end.

USING THIS EXAMPLE

This program is available online and is named close_example.

4-42 Code

Compiler Directives

Compiler Directives Specify a variety of special services including conditional compilation and
include files. (Extension)

FORMAT

The Domain Pascal compiler understands the directives shown in Table 4-11. All directives
begin with a percent sign (%). You can specify a directive anywhere a comment is valid.
To use a directive, specify its name as a statement or inside a comment. (There is one
exception: directives associated with the -config option cannot be used as comments.) For
example, all of the following formats are valid:

%directive

{%directive}

(* %directive*)

If you specify a directive within a comment, the percent sign must be the first character
after the delimiter (where spaces count as characters). In addition, you do not need to put
a semicolon at the end of the directive.

You must place a semicolon after some directives if you use them as statements. Those
directives are:

• %begin_inline;

• %begin_noinline;

• %debug;

• %eject;

• %end_inline;

• %end_noinline;

• %include 'pathname';

• %list;

• %natural_alignment;

• %nolist;

Code 4-43

I

I

•

•

Compiler Directives

• %slibrary 'pathname';

• %word_alignment;

Table 4-11. Compiler Directives

Directive

%begin_inline;

%begin_noinline;

* %config

%debug;

%eject;

* %else

* %elseif predicate %then

* %elseifdef predicate %then

* %enable;

%end_noinline;

* %endif

* %error 'string'

Action

Directs the compiler to expand subsequent routines inline,
if -opt 3 or -opt 4 is specified.

Directs the compiler not to expand subsequent routines
inline, even if -opt 4 is specified.

Lets you easily set up a warning message if you forget
to compile with the -config compiler option.

Directs Domain Pascal to compile lines prefixed with this
directive when you use the -cond compiler option. If
you do not use -cond when you compile, lines prefixed
with %debug are not compiled.

Directs Domain Pascal to put a formfeed in the listing file
at this point.

Specifies that a block of code should be compiled if
the preceding %if predicate %then is false.

Directs the compiler to compile the code until the
next %else, %elseif, or %endif directive, if and
only if the predicate is true.

Checks whether additional predicates have been
declared with a %var directive.

Sets compiler directive variables to true.

Directs the compiler to stop inline expansion, if -opt 3 or
-opt 4 is specified.

Allows the compiler to resume inline expansion, if -opt 4
is specified.

Marks the end of a conditional compilation area of
the program.

Prints 'string' as an error message whenever you compile.

* is a directive described in "Directives Associated with the -Con fig Option" later in this chapter.

(Continued)

4-44 Code

Compiler Directives

Table 4-11. Compiler Directives (Cont.)

Directive Action

* %exit Directs the compiler to stop conditionally processing
the file.

* %if predicate %then Directs the compiler to compile the code until the next
%else, %elseif, or %endif directive, if and only if the
predicate is true.

* %ifdef predicate %then Checks whether a predicate was previously declared with
a %var directive.

%include 'pathname'; Causes Domain Pascal to read input from the specified file.

%list; Enables the listing of source code in the listing file.

%natural_alignment; Sets environment to natural alignment.

%nolist; Disables the listing of source code in the listing file.

%slibrary 'pathname'; Causes Domain Pascal to incorporate a precompiled
library into the program.

%pop_alignment; Saves the current alignment by pushing it onto a stack.

%push_alignment; Restores the alignment saved by the last %push_alignment.

* %var Lets you declare variables that you can then use as
predicates in compiler directives.

%warning 'string' Prints 'string' as a warning message whenever you compile.

%word_alignment; Sets environment to default alignment.

* is a directive described in "Directives Associated with the -Con fig Option" later in this chapter.

DIRECTIVES ASSOCIATED WITH THE -CONFIG OPTION

This subsection describes the following compiler directives: %if, %then, %elseif, %else,
%endif, %ifdef, %elseifdef, %var, %enable, %config, %error, %warning, and %exit.

The conditional directives mark regions of source code for conditional compilation. This
feature allows you to tailor a source module for a specific application. You invoke condi­
tional processing by using the -config option when you compile. Unlike the other compiler
directives, conditional directives cannot be used as comments.

Code 4-45

Compiler Directives

Several of the directives take a predicate. A predicate can contain any of the following:

• Special variables that you declare with the %var directive

• Optional Boolean keywords not, and, or or

• A predeclared conditional variable, _BFMT __ COFF

BFMT __ COFF is a Boolean variable. The value of BFMT __ COFF is set
to true whenever the compiler is generating COFF (Common Object File For­
mat) files. Otherwise, the value of _BFMT __ COFF is set to false.

Beginning with SR10, the Domain Pascal compiler generates COFF files when­
ever it compiles your source code.

NOTE: There are two underscore U characters between 'BFMT' and
'COFF' in the name of this variable.

• A pair of predeclared conditional variables that you can use to find out whether
the compiler is generating code for the 68000 family of workstations or for the
Series 10000. These variables are:

_ISP __ M68K (for 68000 code generation)

_ISP __ A88K (for Series 10000 code generation)

NOTE: There are two underscore CJ characters after ' ISP' in the
names of these variables.

For example, given that color and mono are special variables that you defined using %var,
here are some possible predicates:

• color

• not (color)

• mono or color

• (mono and color)

4-46 Code

Compiler Directives

%if predicate %then

%else

If the predicate is true, Domain Pascal compiles the code after %then and before the next
%else, %elseif, or %endif directive.

For example, to specify that a block of code is to be compiled for a color node, you might
choose an attribute name such as color to be the predicate. Then write:

%VAR color {Tell the compiler that 'color' can be used in a predicate.}

%IF color %THEN

Code

%ENDIF;

To set color to true, you can either use the %enable directive in your source code or the
-config option in your compile command line.

The %else directive is used in conjunction with %if predicate %then. %Else specifies a
block of code to be compiled if the predicate in the %if predicate %then clause evaluates
to false. For example, consider the following fragment:

%VAR color {Tell the compiler that 'color' can be used in a predicate.}

%IF color %THEN
Code

%ELSE
Code

%ENDIF;

{Compile this code if color is false.}

%elseif predicate %then

%Elseif predicate %then is used in conjunction with %if predicate %then. It serves an
analogous purpose to the Pascal statement

else if cond then statement

Code 4-47

Compiler Directives

%endif

For example, suppose you want to compile one sequence of statements if the program is
going to run on a color node, and another sequence of statements if the program is going
to run on a monochromatic node. To accomplish that, you could organize your program in
the following way:

%VAR color mono {Tell the compiler that 'color' and 'mono' can be }
{used in a predicate. }

%1F color %THEN {Compile the following code if color is true.}
Code for color nodes

%ELSE1F mono %THEN {Compile the following code if mono is true.}
Code for monochromatic nodes

%END1F;

To set color or mono to true, you can either use the %enable directive in your source
code or the -con fig option in your compile command line. If color and mono are both
true, Domain Pascal compiles the code for color nodes since it appears first. Note that you
can put mUltiple %elseif directives in the same block.

Or, suppose that you want to tailor a source module for a specific application, depending
on whether the compiler is generating code for the 68000 family of workstations or the
Series 10000. Consider the following fragment:

%1 F I SP _ M6 8K %THEN PROCEDURE do _6 8K ...

%ELSEIF ISP A88K %THEN PROCEDURE do 100000

%ENDIF;

The above fragment tells the compiler to compile the do _ 68K procedure if it is generating
68K code and to compile the do_lOOOO procedure if it is generating code for the Series
10000.

NOTE: Since _ISP __ M68K and _ISP __ A88K are predeclared, you
cannot use the %enable directive or the -config option with
them.

The %endif directive tells the compiler where to stop conditionally processing a particular
area of code.

4-48 Code

Compiler Directives

%ifdef predicate %then

Use %ifdef predicate %then to check whether a variable was already declared with a %var
directive. If you accidentally declare the same variable more than once, Domain Pascal
issues an error message. %lfdef is a way of avoiding this error message. %lfdef is espe­
cially helpful when you don't know if an include file declares a variable.

For example, consider the following use of %ifdef:

%INCLUDE 'bitmap_init.ins';{Source code that mayor may not have used }
{%VAR to declare the variable 'color'. }

%IFDEF not (color) %THEN
%VAR color

{If color has not been declared }
{with %VAR, declare it now. }

%ENDIF;

NOTE: The difference between %if and %ifdef is the following. Vari­
ables in an %if predicate are considered true if you set them to
true with %enable or -config; however, variables in an %ifdef
predicate are considered true if they have been declared with
%var.

%elseifdef predicate %then

%Elseifdef is to %ifdef as %elseif is to %if. Use %elseifdef predicate %then to check
whether or not additional variables were declared with %var; for example:

%INCLUDE 'bitmap_init.ins'; {Source code that mayor may not have }

%IFDEF not (color) %THEN
%VAR color

%ELSEIFDEF not (mono) %THEN
%VAR mono

%ENDIF;

{used %VAR to declare the variables }
{'color' or 'mono.' }

{If color has not been declared with
{%VAR, declare it now.

{If mono has not been declared with
{%VAR, declare it now.

}
}

}
}

Code 4-49

Compiler Directives

%var

%enable

%config

The %var directive lets you declare variable and attribute names that will be used as predi­
cates later in the program. You cannot use a name in a predicate unless you first declare it
with the %var directive. The following example declares the names code.old and code.new
as predicates:

%VAR code. old code. new

The compiler preprocessor issues an error if you attempt to declare with %var the same
variable more than once. (Use %ifdef or %elseifdef to avoid this error.)

Use the %enable directive to set a variable to true. (%Enable and the -config compiler
option perform the same function.) You create variables with the %var directive. If you do
not specify a particular variable in an %enable directive or -config option, Domain Pascal
assumes that it is false.

For example, the following example declares three variables named code.sr9, code.sr8,
and code.sr7, then it sets code.sr9 and code.sr7 to true:

%VAR code.sr9 code.sr8 code.sr7
%ENABLE code.sr9 code.sr7

The compiler preprocessor issues an error message if you attempt to set (with %enable or
-con fig) the same variable to true more than once.

The %config directive is a predeclared attribute name. You can use %config only in a
predicate. The Domain Pascal preprocessor sets %config to true if your compiler command
line contains the -config option, and sets %config to false if your compiler command line
does not contain the -config option. The purpose of the %config directive is to remind
you to use the -config option when you compile; for example:

%IF color %THEN

{This is the code for color nodes.}

%ELSEIF mono %THEN

4-50 Code

Compiler Directives

{This is the code for monochromatic nodes.}

%ELSEIF %config %THEN
%warning('You did not set color or mono to true.');

%ENDIF

NOTE: You cannot declare %config in a %var directive.

%error 'string'

This directive causes the compiler to print 'string' as an error message. You must place this
directive on a line all by itself.

For example, suppose you want the compiler to print an error message whenever you com­
pile with the -config mono option. In that case, set up your program like this:

%VAR color mono

%IF color %THEN

{Code for color nOde.}

%ELSEIF mono %THEN
%ERROR 'I have not finished the code for a monochromatic node.'

%ENDIF

If you do compile with the -config mono option, Domain Pascal prints out the following
error message:

(0011) %ERROR 'I have not finished the code for a monochromatic node.'
******** Line 11: Conditional compilation user error.

1 error, no warnings, Pascal Rev n.nn

Because of the error, Domain Pascal does not create an executable object.

%warning 'string'

This directive causes the compiler to print 'string' as a warning message. You must place
this directive on a line all by itself. For example, suppose you want the compiler to print a

Code 4-51

Compiler Directives

%exit

warning message whenever you forget to compile with the -config color option. In that
case, set up your program like this:

%VAR color mono

%IF color %THEN

{Code for color node.}

%ELSE
%WARNING 'You forgot to use the -CONFIG color option.

%ENDIF

Then, if you don't compile with the -config color option, Domain Pascal prints out the
following error message:

(0011) %WARNING 'You forgot to use the -CONFIG color option.
******** Line 11: Warning: Conditional compilation user warning.
No errors, 1 warning, Pascal Rev n.nn

A warning does not prevent the compiler from creating an executable object.

%Exit directs the compiler to stop processing the file. For example, if you put %exit in an
include file, Domain Pascal only reads in the code up until %exit. (It ignores the code that
appears after %exit.)

%Exit has no effect if it is in a part of the program that does not get compiled.

DIRECTIVES NOT ASSOCIATED WITH THE -CONFIG OPTION

The remaining compiler directives are not specifically associated with the -config compiler
option.

I
%begin.:....inline; and %end_inline;

The %begin_inline and %end_inline directives are delimiters that define routines for in line
expansion. Inline expansion means that the compiler generates code for a given routine
wherever a call to that routine appears.

4-52 Code

Compiler Directives

Inline expansion of a given routine allows you to avoid the overhead of a procedure or
function call. When used with small routines, inline expansion can increase execution
speed. It also increases the size of the executable code, however.

Follow these rules when using %begin_inline and %end_inline:

• Place %begin_inline on a line in the source file before you begin any appropriate
procedure or function definitions.

• Place %end_inline on the line following the last routine that you define for inline
expansion.

Suppose that a program contains this function declaration:

%begin_inline;
function test_pos (number: real)
begin

test_pas .- (number >= 0.0);
end;
%end_inline;

boolean;

Whenever you call the function test_pos in your main program, the compiler generates
code for the function at that point, instead of transferring control to the function.

You cannot nest these directives, and you must have matching pairs to begin and end the
specification. The compiler detects recursion and will not use inline expansion if doing so
would cause the compiler to loop indefinitely.

The %begin_inline and %end_inline directives are effective only if you compile with an
optimization level of 3 or 4. With Domain Pascal, level 3 is the default.

At optimization level 3, the compiler expands all routines that are enclosed between
%begin_inline and %end_inline directives, so long as they are not recursive. At optimiza­
tion level 4, the compiler expands all of these functions, and also selects other functions
that are suitable for inline expansion.

%begin_noinline; and %end_noinline;

The %begin_noinline and %end_noinline directives are delimiters for routines that the
compiler must never expand inline. These delimiters are the converse of %begin_inline
and %end_jnline. Use %begin_noinline and %end_noinline if you specify an optimiza­
tion level of 4, but want to restrict inline expansion of certain functions.

Code 4-53

Compiler Directives

%debug;

Follow these rules when using %begin_noinline and %end_noinline:

• Place %begin_noinline on a line in the source file before you begin any appropri­
ate procedure or function definitions.

• Place %end_noinline on the line following the last routine that you define for no
inline expansion.

The following code fragment tells the compiler not to use inline expansion for the for_loop
procedure under any circumstances.

%begin_noinline;
procedure for_loop;
var

i : integer32;
begin

for i := 1 to 100 do
writeln('i is i);

end;
%end_noinline;

The %debug directive marks source code for conditional compilation. The "condition" is
the compiler option, -condo If you compile with the -cond option, then the compiler
compiles the lines that begin with %debug. If you do not compile with the -cond switch,
Domain Pascal does not compile the lines that begin with %debug. The reason this direc­
tive is called %debug is that it can help you debug your program.

For instance, consider the following fragment:

value := data + offset;
%DEBUG; writeln('Current value is value:3);

The preceding fragment contains one %debug directive. If you compile with the -cond
option, then the system executes the writeln statement at run time. If you compile without
the -cond option, the system does not execute the writeln statement at run time. There­
fore, you can compile with the -cond option until you are sure the program works the way
you want it to work, and then compile without the -cond option to eliminate the (now)
superfluous writeln message.

The %debug directive applies to one physical line only, not to one Domain Pascal state­
ment. Therefore, in the following example, % debug applies only to the for clause. If you
compile with -cond, Domain Pascal compiles both the for statement and the writeln pro-

4-54 Code

%eject;

Compiler Directives

cedure. If you compile without -cond, Domain Pascal compiles only the writeln procedure
(and thus there is no loop).

%DEBUG; FOR j := 1 to max size do
WRITELN(barray[j]);

If you %debug within a line, text to the left of the directive is always compiled, and text
to the right of the directive is conditionally compiled.

The %eject directive does not affect the. bin file; it only affects the listing file. (The -I
compiler option causes the compiler to create a listing file.) The %eject directive specifies
that you want a page eject (formfeed) in the listing file. The statement that follows the
%eject directive appears at the top of a new page in the listing file.

%include 'pathname';

Use the %include directive to read in a file ('pathname') containing Domain Pascal source
code. This file is called an include file. The compiler inserts the file where you placed the
%include directive.

Many system programs use the %include directive to insert global type, procedure, and
function declarations from common source files, called insert files. The Domain system
supplies insert files for your programs that call system routines. The insert files are stored
in the Isys/ins directory; see Chapter 6 for details.

Domain Pascal permits the nesting of include files. That is, an include file can itself con­
tain an %include directive.

The compiler option -idir enables you to select alternate pathnames for insert files at com­
piletime. See Chapter 6 for details.

%list; and %nolist;

NOTE: This directive has no effect if it's in a part of the program that
does not get compiled.

The %list and %nolist directives do not affect the . bin file, they only affect the listing file.
(The -I compiler option causes the compiler to create a listing file.) %List enables the list-

Code 4-55

Compiler Directives

ing of source code in the listing file, and %nolist disables the listing of source code in the
listing file.

For example, the following sequence disables the listing of the two insert files, and then
re-enables the listing of future source code:

%NOLIST;
%INCLUDE 'jsysjinsjbase.ins.pas';
%INCLUDE 'jsysjinsjios.ins.pas';
%LIST;

%List is the default.

%slibrary 'pathname';

The %slibrary directive is analogous to the %inc1ude directive. While %inc1ude tells the
compiler to read in Domain Pascal source code, %slibrary tells it to read in previously­
compiled code.

The %slibrary directive tells the compiler to read in a precompiled library residing at
'pathname'. The compiler inserts the precompiled library where you place the %slibrary
directive. The compiler acts as if the files that were used to produce the precompiled li­
brary were included at this point, except that any conditional compilation will have already
occurred during precompilation.

Precompiled libraries can only contain declarations; they may not contain routine bodies
and may not declare variables that would result in allocating storage in the default data
section, .data. This means the declarations must either put variables into a named section,
or must use the extern variable allocation clause. See Chapter 3 for more information
about named sections, and Chapter 7 for details on extern.

Use the -slib compiler option (described in Chapter 6) to precompile a library and then
insert -slib's result in 'pathname'. For example, if you create a precompiled library called
mystuff.ins.plb, this is how to include it in your program:

%SLIBRARY'mystuff.ins.plb';

Precompiled library pathnames by default end in . plb.

4-56 Code

Compiler Directives

%natural_alignment; and %word_alignment;

Use the %natural_alignment and %word_alignment directives to tell the compiler how to
align any data that does not have an alignment attribute in its declaration. (See the
"Alignment-Extension" section of Chapter 3 for details about the alignment attributes).
Specifically,

• Use the %natural_alignment directive to set data alignment to natural.

• Use the %word_alignment directive to set all data in the environment to word
alignment.

By default, the Domain Pascal compiler aligns all objects larger than a byte in word­
alignment mode. If you want to change this, you can use the %natural_alignment direc­
tive. Conversely, if you want the compiler to resume word-alignment mode, you can spec­
ify the %word_alignment directive, which overrides the previous directive. In any case,
the alignment directive you specify stays in effect until you specify another one.

You can use these directives in combination with the predeclared conditional variables
_ISP __ 68K and _ISP __ A88K to compile source modules according to whether they will
be run on 680xO or Series 10000 workstations. For example, one way to compile your
program so that it will run efficiently on a Series 10000 workstation would be to add these
lines to the beginning of the program:

%IF ISP A88K
%THEN

%NATURAL_ALIGNMENT;
%ENDIF

NOTE: You can use an alignment directive to set the alignment for pro­
grams or program modules written prior to SR10 that did not in­
clude alignment attributes. Thus, you can gain the improved per­
formance that results from natural alignment without rewriting all
your variable and type declarations.

However, you must be careful when using these directives with
files on disk that have pre-SR10 record formats. The %natu­
ral_alignment and %word_alignment directives change record
layout. This means that the fields of records are in different posi­
tions and you may be unable to access them. (See the "Internal
Representation of Unpacked Records" section of Chapter 3 for
details about the alignment of data in records.)

Code 4-57

Compiler Directives

%push_aJignment; and %pop_alignment;

The %push_aJignment and %pop_aUgnment directives are designed to save and restore
the current alignment mode while another alignment mode is used by a particular structure
or file. The %push_alignment directive saves the current alignment mode by pushing it
onto a stack. The %pop_alignment directive restores the alignment mode saved by the
last %push_aJignment by popping it off the stack.

These directives are useful for controlling the alignment of %include files. For example, a
%push_aJignment directive placed at the top of an %include file tells the compiler to save
the current alignment mode by pushing it onto the stack. A %pop_alignment directive
placed at the end of the %include file restores the alignment mode saved by the last
%push_aJignment.

4-58 Code

Cos Calculates the cosine of the specified number.

FORMAT

cos (number) {cos is a function.}

ARGUMENTS

number Any real or integer value in radians (not degrees).

FUNCTION RETURNS

The cos function returns a real value (even if number is an integer).

DESCRIPTION

The cos function calculates the cosine of number.

EXAMPLE

PROGRAM cos_example;

{ This program demonstrates the COS function. }

CaNST

VAR

pi 3.1415926535;

degrees : INTEGER;
q, c1, c2, radians

BEGIN
q := 0.5;

REAL;

c1 := COS(q); {Find the cosine of one-half radians. }
writeln('The cosine of' q:5:3, ' radians is " c1:5:3);

Cos

Code 4-59

Cos

{The following statements show how to convert from degrees to radians.}
{More specifically. they find the cosine of 14 degrees.}

END.

degrees := 14;
radians := «degrees * PI) / 180.0);
c2 := COS(radians);
writeln('The cosine of '. degrees: 1. ' degrees is c2:5:3);

USING THIS EXAMPLE

If you execute the sample program cos_example. you get the following output:

The cosine of 0.500 radians is 0.878
The cosine of 14 degrees is 0.970

4-60 Code

Ctop

Ctop Converts a C-style string to a variable-length string. (Extension)

FORMAT

etop(string) : {ctop is a procedure.}

ARGUMENTS

string A variable-length string.

DESCRIPTION

The ctop procedure converts a C-style null-terminated string into a variable-length string
by searching the body field of the string for a terminating null byte and setting the string's
length field accordingly. (See the "Variable-Length Arrays-Extension" section of Chapter
3 for details about variable-length strings.) Note that this function does not remove the
null byte; it simply sets the length field to one less than the null byte position.

See the description of ptoc for information about converting a variable-length string into a
null-terminated string.

EXAMPLE

(See the description of the ptoe procedure.)

Code 4-61

Discard

Discard Explicitly discards the return value of an expression. (Extension)

FORMAT

discard (exp) {discard is a procedure.}

ARGUMENTS

exp Any expression, including a function call.

DESCRIPTION

In its effort to produce efficient code, the compiler sometimes issues warning messages con­
cerning optimizations it performs. Those optimizations might not be right for your particular
situation. For example, if you compute a value but never use it, the compiler may elimi­
nate the computation, or the assignment of the value, and issue a warning message.

However, there are times when you call a function for its side effects rather than its return
value. You don't need the value, but a Pascal function always returns a value to retain
legal program syntax. You must keep the function call in your program, but if you don't
use the value, the compiler's optimizer automatically discards the return value and issues a
warning message.

Since you know the return value is useless, in such a case you may want to eliminate this
particular warning message. Domain Pascal's discard procedure explicitly throws away the
value of its exp and so gets rids of the warning. For example, to call a function that re­
turns a value in argl without checking that value, use discard as follows:

DISCARD(rny_function(argl»;

EXAMPLE

PROGRAM discard_example;

VAR
payment, monthly_sal: real;

{ The following function figures out whether a user can afford the }
{ mortgage payments for a given house based on the rule that no more }
{ than 28% of one's gross monthly income should go to housing costs. }

4-62 Code

FUNCTION enough(in payment
in out monthly_sal

VAR
amt_needed : real;

BEGIN
writeln;
amt_needed := monthly_sal * 0.28;

if amt_needed < payment then
begin
enough := false;
monthly_sal := payment / (0.28);

real;
real) boolean;

Discard

writeln ('Your monthly salary needs to be' monthly_sal:6:2);
end

else
begin

END;

enough := true;
writeln('Amazing! You can afford this house.');
end

{end function enough}

BEGIN {main program}
write ('How much is the monthly payment for this house? ');
read In (payment);
write ('What is your gross monthly salary? ');
readln (monthly_sal);

{ The function enough can change the value of the global variable }
{ monthly_sal, so the function call is important, but its return }
{ value is not. DISCARD that return value. }

DISCARD (enough(payment,monthly_sal»;
END.

USING THIS EXAMPLE

Following is a sample run of the program named discard_example:

How much is the monthly payment for this house? 928
What is your gross monthly salary? 2400

Your monthly salary needs to be 3314.29

Code 4-63

Dispose

Dispose Deallocates the storage space that a dynamic variable was using. (Refer also to New.)

FORMAT

Dispose is a predeclared procedure that takes one of two formats. The format you choose
depends on the format you use to call the new procedure. If you create a dynamic vari­
able with the short form of new, then you must use the short form for dispose, which is:

dispose(p) {dispose is a procedure.}

If you create a dynamic variant record with the long form of new, then you must use the
long form of dispose, which is:

dispose(p, tagl .. tagN);

ARGUMENTS

tag

p

DESCRIPTION

One or more constants. The number of constants in a dispose call must
match the number of constants in the new call.

A variable declared as a pointer. After you call dispose (P), Domain Pas­
cal sets p to nil.

If P is a pointer, then dispose (p) causes Pascal to deallocate space for the occurrence of
the record that p points to. Deallocating means that Pascal permits the memory locations
occupied by the dynamic record to be occupied by a new dynamic record. For example,
consider the following declarations:

TYPE
employeepointer = Aemployee;
employee = record

first name array[l .. lO] of char;
last name array[1 .. 14] of char;
next_emp employeepointer;

end;

VAR
current_employee employeepointer;

4-64 Code

Dispose

To store employee records dynamically, call new(current_emp)oyee) for every employee.
If an employee leaves the company, and you want to delete his or her record, you can call
dispose (current_emp)oyee) . Dispose returns the storage occupied by that record for reuse
by a subsequent new call.

If you create a dynamic record using a long-form new procedure, then you must call dis­
pose with the same constants. For example, if you create a dynamic record by calling
new(widget, 378, true), then to deallocate the stored record, you must call dispose(wid­
get, 378, true).

Note that the dispose procedure merely de allocates the record. If this disconnects a linked
list, then it is up to you to reset the pointers. If some other variable points to this record
and another program uses dispose to deallocate the record, then you get erroneous results.

EXAMPLE

NOTE: If you call dispose(p) when p is nil, Domain Pascal reports an
error. It is also an error to call dispose when p points to a block of
storage space that you already deallocated with dispose. Finally,
if you use a pointer copy that points to deallocated space, the
results are unpredictable.

For a sample program that uses dispose, refer to the new listing later in this encyclopedia.

Code 4-65

Div

Div Calculates the quotient (excluding the remainder) of two integers.

FORMAT

dl div d2 {div is an operator.}

ARGUMENTS

dl. d2 Any integer expression.

OPERATOR RETURNS

The result of a div operation is always an integer.

DESCRIPTION

The expression (d 1 div d2) produces the integer (nonfractional) result of dividing d 1 by
d2. The div operator uses the division rules of standard mathematics regarding negatives.
For example, consider the following results:

9 DIV 3 is equal to 3 -9 DIV 3 is equal to -3
10 DIV 3 is equal to 3 -10 DIV 3 is equal to -3
11 DIV 3 is equal to 3 -11 DIV 3 is equal to -3
12 DIV 3 is equal to 4 -12 DIV 3 is equal to -4
13 DIV 3 is equal to 4 -13 DIV 3 is equal to -4

9 DIV (-3) is equal to -3 -9 DIV (-3) is equal to 3
10 DIV (-3) is equal to -3 -10 DIV (-3) is equal to 3
11 DIV (-3) is equal to -3 -11 DIV (-3) is equal to 3
12 DIV (-3) is equal to -4 -12 DIV (-3) is equal to 4
13 DIV (-3) is equal to -4 -13 DIV (-3) is equal to 4

To find the remainder of an integer division operation, use the mod operator. (See the
mod listing later in this encyclopedia.)

See the "Expressions" listing later in this encyclopedia for information on using binary and
unary operators together.

4-66 Code

Div

EXAMPLE

PROGRAM div_example;
{ This program converts a 3-digit integer to a 3-character array. }
{ Note that the character 0 has an ISO Latin-1 value of 48, the }
{ character 1 has an ISO Latin-1 value of 49, and so on up until the }
{ character 9, which has an ISO Latin-1 value of 57. }

VAR
x
digits

BEGIN

100 .. 999;
array[1 .. 3] of char;

write('Enter a three-digit integer -- ');
readln(x);

digits[l] :=chr(48 + (x DIV 100»;
x := x MOD 100;
digits[2] .- chr(48 + (x DIV 10»;
digits[3] := chr(48 + (x MOD 10»;

writeln(digits);
END.

USING THIS EXAMPLE

This program is available online and is named div_example.

Code 4-67

Do

Do Refer to the For or While listings later in this encyclopedia.

4-68 Code

Downto

Downto Refer to For later in this encyclopedia.

Code 4-69

Else

Else Refer to If later in this encyclopedia.

4-70 Code

End

End Signifies the end of a group of Pascal statements.

FORMAT

End is a reserved word.

DESCRIPTION

End is the terminator for a sequence of Pascal statements. A Pascal program must contain
an end to match every begin.

Pascal requires a begin/end pair to indicate a compound statement. (Refer to the" State­
ments" listing later in this encyclopedia.)

Pascal requires end (without an accompanying begin) in the following situations:

• To terminate a case command.

• To terminate a record declaration.

EXAMPLE

{This program does very little work, but does have lots of BEGINs }
{and ENDs. }

TYPE
student = record

age: 6 .. 12;
id : integer16;

end; {student record definition}
VAR

x integer32;

PROCEDURE do_nothing;
BEGIN {do_nothing}
writeln('You have triggered a procedure that does absolutely nothing.');
writeln('Though it does do nothing with elan.').
END; {do_nothing}

Code 4-71

End

FUNCTION do next to nothing(var y
BEGIN {do_~ext_to_~othing}

do next to nothing := abs(y);
END; -{do_~ext_to_nothing}

BEGIN {main procedure}
write('Enter an integer -- ');
if x < 0

then BEGIN

integer32) integer32;

readln(x);

writeln('You have entered a negative number!!!');
writeln('Its absolute value is " do_next_to_nothing(x):l);

END
else if x == 0

then BEGIN

else

writeln('You have entered zero');
do_nothing;

END

writeln('You have entered a positive number!! I');
END. {main procedure}

USING THIS EXAMPLE

This program is available online and is named begin_end_example.

4-72 Code

Eof

Eor Tests the current file position to see if it is at the end of the file.

FORMAT

eor (filename) {eor is a function.}

ARGUMENTS

filename

FUNCTION RETURNS

A file variable symbolizing the pathname of an open file. The filename
argument is optional. If you do not specify filename, Domain Pascal as­
sumes that the file is standard input (input).

The eor function returns a Boolean value.

DESCRIPTION

The eor function returns true if the current file position is at the end of file filename; oth­
erwise, it returns false. With one exception, filename must be open for either reading or
writing when you call eor. The one exception occurs when filename is input; for a descrip­
tion of this exception, see the "Interactive 1/0" section in Chapter 8.

Code 4-73

Eof

EXAMPLE

PROGRAM eot_example;
{NOTE: Before running this program, you must obtain file "annabel lee" }
{ and store it in the same directory as the program. }

CONST

VAR
title_of_poem = 'annabel_lee';

poetry
stat

text;
integer32;

a_line string;
BEGIN
{Open file anabel_lee for reading.}
open (poetry , title_of_poem, 'OLD', stat);
if stat = 0 then

reset (poetry)
else

return;
{Read each line from the file and write each line to the screen. }
{Halt execution when end of file is reached. }
while not EOF(poetry) do

END.

begin
readln (poetry , a_line);
writeln(output, a_line);
end;

USING THIS EXAMPLE

This program is available online and is named eor_example.

4-74 Code

Eoln

Eoln Tests the current file position to see if it is pointing to the end of a line.

FORMAT

eoln(/) {eoln is a function.}

ARGUMENTS

f A variable having the text data type. f is optional; if you do not specify
it, eoln tests the standard input (input) file.

FUNCTION RETURNS

The function returns a Boolean value.

DESCRIPTION

The eoln function returns true when the stream marker points to an end-of-line character;
otherwise, with two exceptions, eoln returns false. The two exceptions are:

EXAMPLE

• Eoln causes a run-time error if f was not opened for reading (with reset) or for
writing (with rewrite). However, you do not need to open input or output for
reading or for writing. (See the "Interactive I/O" section in Chapter 8 for details
on input and output.)

• Eoln causes a run-time error if eof(f) is true.

PROGRAM eoln_example;
{NOTE: Before running this program, you must obtain file "annabel_lee" }
{ and store it in the same directory as the program. }

CaNST
title_of_poem 'annabel_lee';

VAR
poetry
stat
a char

text;
integer32;
char;

Code 4-75

Eoln

BEGIN
{ Open file annabel_lee for reading. }

open(poetry, title_of_poem, 'OLD', stat);
if stat == 0

then reset(poetry)
else return;

{ Read in the first line of the poem one character at a time, }
{ and write each character to the screen. }

repeat

END.

read (poetry, a_char);
writeln(output, a_char);

until EOLN(poetry);

USING THIS EXAMPLE

This program is available online and is named eolo_example.

4-76 Code

Exit

Exit Transfers control to the first statement following a for, while, or repeat loop. (Extension)

FORMAT

Exit is a statement that neither takes arguments nor returns values.

DESCRIPTION

Use exit to terminate a loop prematurely; that is, to jump out of the loop you're in. In
nested loops, exit applies to the innermost loop in which it appears. You can use exit
within a for, while, or repeat loop only. If exit appears elsewhere in a program, Domain
Pascal issues an error.

It is preferable to use exit for jumping out of a loop prematurely rather than goto. That's
because goto inhibits some compiler optimizations that exit does not.

EXAMPLE

PROGRAM exit_example;
{This program demonstrates the exit statement. }
VAR

i, j integer16;
real; , data

geiger
BEGIN

array[l .. 5, 1 .. 3] of real .- [[* of 0.0], [* of 0.0] ,];

for i := 1 to 4 do
begin

writeln;
for j := 1 to 3 do

begin
writeln(chr(10), 'Enter the data for coordinates', i:2, ',', j:1);
write('(or enter -1 to jump down to the next row) -- ');
readln(data);
if data = -1 then

EXIT
else

geiger[i,j] .- data;
end; {for j}

end; {for i}
END.

Code 4-77

Exit

USING THIS EXAMPLE

Following is a sample run of the program named exit_example:

Enter the data for coordinates 1,1
(or enter -1 to jump down to the next row) -- 1.2

Enter the data for coordinates 1,2
(or enter -1 to jump down to the next row) -- -1

Enter the data for coordinates 2,1
(or enter -1 to jump down to the next row) -- 3.2

Enter the data for coordinates 2,2
(or enter -1 to jump down to the next row) -- 1.2

Enter the data for coordinates 2,3
(or enter -1 to jump down to the next row) -- 4.3

Enter the data for coordinates 3,1
(or enter -1 to jump down to the next row) -- -1

Enter the data for coordinates 4,1
(or enter -1 to jump down to the next row) -- 1.3

Enter the data for coordinates 4,2
(or enter -1 to jump down to the next row) -- 4.2

Enter the data for coordinates 4,3
(or enter -1 to jump down to the next row) -- -5

4-78 Code

Exp Calculates the value of e, the base of natural logarithms, raised to the specified power.
(See also Ln.)

FORMAT

exp(number) {exp is a function.}

ARGUMENTS

number Any real or integer expression.

FUNCTION RETURNS

The exp function returns a real value.

DESCRIPTION

The exp function returns e raised to the power specified by number.

e to 16 significant digits is 2.718281828459045.

Exp

Note that Domain Pascal supports an exponentiation operator. (See the "Overview: Mathe­
matical Operators" section earlier in this chapter for details about the exponentiation op­
erator.)

EXAMPLE

PROGRAM exp_example;
{This example demonstrates the use of EXP in calculating the}
{exponential growth of bacteria. }

CONST

cl 0.3466;

VAR

starting_quantity : INTEGER;
ending_quantity, elapsed_time REAL;

Code 4-79

Exp

BEGIN

write('How many bacteria are there at zero hour? -- ');
readln(starting_quantity);
write('How many hours pass? -- ');
readln(elapsed_time);

ending quantity := starting_quantity * EXP(c1 * elapsed_time);

writeln('There will be approximately' ending_quantity:1,' bacteria.');

END.

USING THIS EXAMPLE

Following is a sample run of the program named exp_example:

How many bacteria are there at zero hour? -- 10500
How many hours pass? -- 5.6
There will be approximately 7.313705E+04 bacteria.

4-80 Code

Expressions

Expressions

Throughout this encyclopedia, we refer to expressions. Here, we define expressions. An
expression can be any of the following:

• A constant declared in a const declaration part

• A variable declared in a var declaration part

• A constant value

• A function call

• Anyone of the above preceded by a unary operator appropriate to its data type

• Any two of the above separated by a binary operator appropriate to their data
types

You can organize expressions into more complex expressions with parentheses. For exam­
ple, the odd function requires an integer expression as an argument. The following pro­
gram fragment demonstrates several possible arguments to odd:

CONST
century .- 100;

VAR
x, y

result

BEGIN

result
result
result
result
result
result

integer;
boolean;

.- ODD (century) ;

.- ODD (x) ;

.- ODD(15);

.- ODD(sqr(25»;

.- ODD(x + y);

.- ODD ((x * 3) + sqr(y»;

{a constant}
{a variable}
{a value}
{a function}
{an operation}
{several operations}

Code 4-81

Expressions

4-82 Code

NOTE: You cannot follow a binary operator with a unary operator of
lower precedence. For example, consider the following proper
and improper expressions:

9 DIV -3 {improper expression}
9 DIV (-3) {proper expression}
5 * -100 {improper expression}
5 * (-100) {proper expression}

Table 4-3 shows the order of precedence of operators.

Find

Find Sets the file position to the specified record .. (Extension)

FORMAT

find(jile_variabJe, record_number, error_status); {find is a JJrocedure.}

ARGUMENTS

file variable Must be a variable having the file data type. The file_variable argument
cannot be a variable having the text data type.

record_number Must be an integer between 1 and n or between -1 and -n, where 1 de­
notes the first record of the file and n denotes the last record.

error _status Must be declared as a variable with the integer32 data type. Domain Pas­
cal returns a hexadecimal number in error _status which has the following
meaning:

DESCRIPTION

o - no error or warning occurred.

greater than 0 - an error occurred.

less than 0 - a warning occurred.

NOTE: Your program is responsible for handling the error. We detail er­
ror handling in Chapter 9.

Before reading this, make sure you are familiar with the description of I/O in Chapter 8.

When you open a file for reading, the operating system sets the stream marker to the be­
ginning of the file. You can call read to move this stream pointer sequentially, or you can
call find to move it randomly.

Before you can call find, you must have first opened the file symbolized by file_variable
for reading. (See Chapter 8 for a description of opening files for reading.) When you call
find, Domain Pascal sets the stream marker to point. to the record specified by
record_number.

Code 4-83

Find

If you specify a record_number between 1 and n, where n is the number of records in the
file, find locates that number record. If record_number is between -1 and -n, find counts
backward from the end of the file to locate the proper record. For example, if there are
five records in the file and you specify -4 for record_number, Domain Pascal counts back
four from the end of the file and retrieves record number 2.

If you specify record_number as zero, the compiler returns an error code in error_status.

If you specify a record_number that is one greater than the number of records stored in
the file, Domain Pascal does not return an error code, but does not change the stream
marker either.

After executing a find, Domain Pascal sets the stream marker to point to the beginning of
the next record. For example, if record_number is 2, then after executing a find, Domain
Pascal sets the stream marker to point to record 3.

Frequently, programmers use the find procedure with the replace procedure (which is de­
scribed later in this encyclopedia).

NOTE: The term "record," as it applies to files of file type, refers to a
data object of the file's base type. This is not necessarily a Do­
main Pascal record type.

EXAMPLE

{This program demonstrates the FIND and REPLACE procedures. }
{ NOTE: File 'his101' must exist before you run get_example. }
{ To create 'his101', you must run put_example. }

%NOLIST;
%1 NCLUDE
%1 NCLUDE
%1 NCLUDE
%LIST;

{ We need these include files
'/sys/ins/base.ins.pas';
'/sys/ins/error.ins.pas';
'/sys/ins/streams.ins.pas';

CONST
pathname 'his101';

TYPE
student

for error checking.

RECORD
name
age

END;

array[l .. 12] of char;
integer16;

4-84 Code

}

VAR
class
a_student
st
more_corrections
particular_record
n

FILE OF student;
student;
status_$t;
char;
integer16 :== 0;
integerl6;

Find

PROCEDURE print_records;
BEGIN

END:

n : == 0;
writeln(chr(10), 'Here are the records stored in the file:');
reset(class);
repeat

n :== n + 1;
read(class, a student);
writeln('record " n:2, '

until eof(class);
a_student.name, a_student.age);

PROCEDURE correct_errors;
BEGIN

END;

write('Enter the number of the record you wish to change -- ');
readln(particular_record);
if particular_record == n+l then

writeln ('There are only' n:2, ' records in the file.')
else

BEGIN
FIND(class, particular_record, st.all);
if st.code == 0 then

BEGIN
write('What should this name be -- ');
readln(a_student.name);
write('What should this age be -- ');
readln(a_student.age);
class A :== a_student;
REPLACE(class);
END

else if st.code == stream_$end_of_file then
BEGIN
write('You specified a number greater than the number of ');
writeln ('records in the file.');
END

else
error_$print(st);

END;

Code 4-85

Find

BEGIN {main procedure}

END.

open(class, pathname, 'OLD', st.all);
if st.code = 0 then

BEGIN
repeat
print_records;
write('Do you want to correct any records? (enter y or n) -- ');
readln(more_corrections);
if more_corrections = 'y' then

correct errors
else

exit;
until false;
END

else if st.code = stream_$name_not_found then
writeln('Did you remember to run put_example to create hislOl?')

else
error_$print(st);

USING THIS EXAMPLE

Following is a sample run of the program named find_and_replace_example

Here are the records you have entered:
record 1 Kerry 28
record 2 Barry 26
record 3 Jan 25
Do you want to correct any records? (enter y or n) -- y
Enter the number of the record you wish to change -- 2
What should this name be -- Sandy
What should this age be -- 27

Here are the records you have entered:
record 1 Kerry 28
record 2 Sandy 27
record 3 Jan 25
Do you want to correct any records? (enter y or n) -- n

4-86 Code

Firstof

Firstof Returns the first possible value of a type or a variable. (Extension)

FORMAT

firstof(x) {firstof is a function.}

ARGUMENTS

x Is either a variable or the name of a data type. The data type can be a
predeclared Domain Pascal data type, or it can be a user-defined data
type. x cannot be a record, file, or pointer type.

FUNCTION RETURNS

The firstof function returns a value having the same data type as x.

DESCRIPTION

The firstof function returns the first possible value of x according to the following rules:

Data Type of x Firstof Returns

integer or integer16 -32767

integer32 -2147483647

char The character represented by chr(O)
called nul.

boolean False.

enumerated The first (leftmost) identifier in the
data type declaration.

array The lower bound of the subrange that
defines the array's size.

varying array 1

The firstof function is particularly useful for finding the first element of an enumerated
type (as in the example).

Code 4-87

Firstof

EXAMPLE

PROGRAM firstof_lastof_example;

{This program demonstrates the use of the firstof and lastof functions}
TYPE

astronomers
VAR

stargazers
BEGIN

(aristotle, galileo, newton, tycho, kepler);

astronomers;

writeln('The following is a list of great astronomers:');
for stargazers := firstof(astronomers) to lastof(astronomers) do

writeln(stargazers);
END.

USING THIS EXAMPLE

If you execute the sample program named firstof_lastof_example, you get the following
output:

The following is a list of great astronomers:

4-88 Code

ARISTOTLE
GALILEO

NEWTON
TYCHO

KEPLER

For

For Repeatedly executes a statement a fixed number of times.

FORMAT

for index_variable:= start_exp to I down to stop_exp do
stmnt; {for is a statement}

ARGUMENTS

index_variable Any variable declared as an ordinal type. The ordinal types are enumer­
ated, subrange, integer, Boolean, and char. Note that index_variable can­
not be a real number. As an extension to standard Pascal, Domain Pascal
permits the index_variable to be declared in a scope other than the scope
of the routine immediately containing the for loop.

start_exp An expression matching the type of the index_variable.

stop_exp An expression matching the type of the index_variable.

stmnt A simple statement or compound statement. (Refer to the "Statements"
listing later in this encyclopedia.)

DESCRIPTION

For, repeat, and while are the three looping statements of Pascal. With for, you explicitly
define both a starting and an ending value to the index_variable.

When executing a for loop, Pascal initializes the index_variable to the value of the
start_exp, and then either increments (to) or decrements (downto) the value of the in­
dex_variable by 1 until its value equals that of the stop_expo When the index_variable
equals the value of the stop_exp, Pascal executes the statements in the loop one final time
before exiting the loop. You may not assign a value to index_variable within the body of
the for loop.

If index_variable is an integer or subrange variable, for increments or decrements its
value by 1 for each cycle. If index_variable is a char variable, then for increments or
decrements its ISO Latin-l value by 1 for each cycle. If index_variable is an enumerated
variable, then incrementing means selecting the next element in sequence and decrement­
ing means selecting the preceding element. If index_variable is a Boolean, then true has a
value greater than false.

Code 4-89

For

The keyword to causes incrementing; the keyword downto causes decrementing.

If you want to jump out of a for loop prematurely (i.e., before the value of the in­
dex_variable equals the value of the stop_exp), you have the following choices:

• Execute an exit statement to transfer control to the first statement following the
for loop.

• Execute a goto statement to transfer control to outside of the loop.

• Execute a return statement to transfer control back to the calling routine.

In addition to these measures, you can also execute a next statement to skip the remain­
der of the statements in the loop and proceed to the next iteration. Here are some tips for
using the for statement:

• Within the stmnt, you are not allowed to change the value of the index_variable.

• If you set up a meaningless relationship between the start_exp and the stop _exp
(for example, for x := 8 to 5 or for x := 10 downto 20), Pascal does not execute
the loop even once.

EXAMPLE

PROGRAM for example;
{This program demonstrates several uses of for loops}

VAR
time, year, zeta: integer16 := 0;
hurricanes : (king, donna, cleo, betsy, inez);
scores: arraY[l .. 5, 1 .. 3] of integer16;
i, j : integer16;

BEGIN

{If you do not use a BEGIN/END pair, FOR assumes that the loop}
{consists of the first statement following it. }

FOR time := 1 TO 3 DO
writeln(time);

4-90 Code

{TO create a loop consisting of multiple statements, enclose the}
{ loop in a BEGIN/END pair. }

FOR time := 21 TO 30 DO
begin
year := year + time;
writeln(year:5); {Write a running total. }
end;

{Here's an example of DOWNTO. }
FOR time := year DOWNTO (year - 100) DO

zeta := zeta + (time * 3);
writeln;
writeln(zeta,' is the result of the downto for loop');
writeln;

{Here's an example of an enumerated index variable. }
FOR hurricanes := donna TO inez DO

writeln(hurricanes);

For

{And finally, we use nested FOR loops to load a 2-dimensional array.}
FOR i := 1 TO 5 DO

END.

begin {for i}
FOR j := 1 TO 3 DO
begin {for j}
write('Enter the score for player' ,i:1,' game' ,j:1,' -- ');
readln(scores[i,j]);
end; {for j}

writeln;
end; {for i}

USING THIS EXAMPLE

This program is available online and is named for_example.

Code 4-91

Get

Get Advances the stream marker to the next component of a file.

FORMAT

get(j) {get is a procedure.}

ARGUMENTS

f A variable having the file or text data type.

DESCRIPTION

If f is a file variable, calling get causes the operating system to advance the stream marker
so that it points to the next record in the file. If f is a text variable, calling get causes the
operating system to advance the stream marker so that it points to the next character in
the file.

After calling get to advance the stream marker, you can use another statement to read in
the data that the stream marker points to and assign it to a variable from your program.
Therefore, the sequence for reading in data looks like the following:

GET(f); { Advance the stream marker. }
variable := fA; { Set variable equal to whatever the stream marker}

{ points to. }

For example, the following program fragment demonstrates input via the get procedure:

VAR
primes
poem
a_number
a letter

file of integer16;
text;
integer16;
char;

BEGIN

4-92 Code

GET(primes);
a_number := primes A; {Set a_number equal to next record in primes}

GET(poem);
a_letter .- poemA; {Set a_letter equal to next character in poem}

Get

Note that the two statements

GET (poem) ;
a_letter := poem A

; {Set a_letter equal to next character in poem }

are identical to the single statement

READ (poem, a_letter);

Also notice that unlike read, get allows you to save the contents of fA.

You must open f for reading (with reset) before calling get. If eor(j) is true, calling get(j)
causes a "read past end of file" error trap.

EXAMPLE

PROGRAM get_example;

{ This program demonstrates the GET procedure. }
{ File 'hisl0l' must exist before you run get_example. }
{ To create 'hisl0l', you must run put_example. }

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%LIST;

CONST
file to read from 'hisl0l';

TYPE
student

record
name array [1 .. 12] of char;
age integer16;

end;

VAR
class file of student;
a student student;
st status_$t;

Code 4-93

Get

BEGIN
{Open a file for reading.}

open(class, file_to_read_from, 'OLD', st.all);
if st.code = 0

then reset(class)
else if st. code = stream_$name_not_found

then begin
writeln('Did you forget to run put_example?');
return;

end
else error_$print(st);

{Now that the file is open, read all the records from it. }
repeat

a_student := class A

;

GET(class);
write(chr(lO), a_student.name);
writeln(a_student.age:2);

until eof(class);
END.

USING THIS EXAMPLE

This program is available online and is named get_example.

4-94 Code

Goto

Goto Unconditionally jumps to a specified label in the program.

FORMAT

goto Ibl; {goto is a statement.}

ARGUMENTS

Ibl Is an unsigned integer or identifier that you have previously declared as a
label. (For information on declaring labels, see the "Label Declaration
Part" section in Chapter 2.)

DESCRIPTION

A goto statement breaks the normal sequence of program execution and transfers control
to the statement immediately following Ibl.

A declared Ibl usually is local to the block in which it is declared. That is, if you know
you declared a label, but the compiler still reports the following error, you must move your
label declaration to the correct procedure or function:

(Name_of_Label) has not been declared in routine (name_of_routine)

It is illegal to use goto to jump inside a structured statement (for example, a for, while,
case, with, or repeat) from outside that statement. This means a fragment like this pro­
duces an error:

if error_flag = true then
goto cleanup;

for i := 1 to 10 do
begin

cleanup:

end;

{WRONG! }

{close for statement}

It is illegal to jump into an if/then/else statement if you compile with the -iso option. See
Chapter 6 for more details.

Code 4-95

Goto

Gotos are useful for handling exceptional conditions (such as an unexpected end of file).

Nonlocal gotos, whose target Ibl is in the main program or some other routine at a higher
level, have a great effect on the generated code. They generally shut off most compiler
optimizations on the code near the target Ibl. In order to produce the most efficient code,
you should try to use goto as infrequently as possible.

You cannot jump into a structured statement from outside that statement. For example,
the go to 100 statements in the bad_gotos program below are illegal. This program also
contains a goto 900 statement that is illegal if you compile with the -iso option.

PROGRAM bad_gotos;
VAR

z,x,value
a_char

LABEL 900;

PROCEDURE f 00 ;

LABEL 100;

BEGIN

integer16;
char;

for x := 1 to 100 do
begin
writeln ('value " x);

100: write ('Enter a value ');
readln(value);
Z := Z + value;
end;

COTO 100; {ILLEGAL: cannot jump to a label inside}
{the for loop. }

END;

BEGIN
write ('Do you want to use the program? ');
readln (a_char);
if a_char = 'y' then

COTO 100

'n'

{ILLEGAL: cannot jump to a label in
{another routine.

then

}
}

else if a_char
COTO 900 {ILLEGAL IF COMPILED WITH -ISO SWITCH:}

{cannot jump to a label that's inside}
{another statement. }

else if a_char = '0' then
writeln ('0 is not a legal response')

else
900: writeln ('ok, we won"t use the program');

END.

4-96 Code

Goto

Note that you can use goto to jump directly from a nested routine to an outer routine. For
example, procedure xxx issues a valid goto in the following program:

Program non_local_goto;
Label

EXAMPLE

900;

Procedure xxx;
BEGIN

GOTO 900;

END;

BEGIN

900: writeln('back in main program.');

END.

PROGRAM goto_example;
{This program demonstrates the use of the goto statement}

TYPE
possible_values = 10 .. 25;

VAR
x : possible_values;

LABEL
100;

BEGIN
writeln('You will now enter the experimental data.', chr(10»;

100:

END.

write('Please enter the obtained value for x -- ');
readln(x);
if in_range (x) then

writeln('This value seems possible.')
else

begin
writeln('This value seems suspicious.');
GOTO 100;
end;

Code 4-97

Goto

USING THIS EXAMPLE

Following is a sample run of the program named goto_example:

You will now enter the experimental data.

Please enter the obtained value for x 3S
This value seems suspicious.
Please enter the obtained value for x 17
This value seems possible.

4-98 Code

If

If Tests one or more conditions and executes one or more statements according to the outcome of
the tests.

FORMAT

You can use if, then, and else in the following two ways:

if cond then stmnt; {first form}

if cond then stmnt 1 else stmnt2; {second form}

ARGUMENTS

cond Any Boolean expression.

stmnt A simple statement or a compound statement. (Refer to the "Statements"
listing in this encyclopedia.) Note that stmnt can itself be another if state­
ment.

DESCRIPTION

The if and case statements are the two conditional branching statements of Pascal.

In an if/then statement, if cond evaluates to true, Pascal executes stmnt. If cond is false,
Pascal executes the first statement following stmnt.

In an if/then/else statement, if cond is true, Pascal executes stmntl. However, if cond is
false, Pascal executes stmnt2.

You often use an if statement to evaluate multiple conditions. To do so, just remember
that a stmnt can itself be an if statement. For example, consider the following if statement
which evaluates multiple conditions:

IF age < 3 THEN
price = 0.0

ELSE IF (age >= 3) AND (age <= 6) THEN
price = 1.00

ELSE IF (age> 6) AND (age <=12) THEN
price 2.00

ELSE
price 4.00;

Code 4-99

If

EXAMPLE

PROGRAM if_example;

{This program demonstrates IF/THEN and IF/THEN/ELSE.}

VAR
y, age, of_age, root_ratings : integer16;
tree (ficus, palm, poinciana, frangipani, jacaranda);
grade : char;

BEGIN
write('Enter an integer -- ');
readln(y); {USAGE 1}
IF Y < 0 THEN

writeln('Its absolute value equals' (abs(y»:3);

write('Enter an age -- ');
readln(age) ;
IF age > 18 THEN

writeln(' An adult')
ELSE

18 - age;

{USAGE 2}

begin
of_age .­
writeln('
end;

A minor for another ' of_age:1,' years.');

write('Enter a grade -- ');
readln(grade);
IF (grade = 'A') OR (grade = 'B') THEN

writeln(' Good work')
ELSE IF (grade = 'C') OR (grade = 'D') THEN

begin
writeln(' Satisfactory work');
writeln(' Though improvement is indicated.');
end

ELSE IF (grade = 'F') THEN
writeln(' Failing work');

4-100 Code

{USAGE 3}

write('Enter the name of a tropical tree -- ');
readln(tree);
IF (tree = poinciana) OR (tree = jacaranda) THEN

begin
writeln(' Blossoms in June and July.');
root_ratings := 9;
end

ELSE IF tree = palm THEN
root_ratings := 8

ELSE
root_ratings := 2;

END.

USING THIS EXAMPLE

Following is a sample run of the program named if_example:

Enter an integer -- -10
Its absolute value equals 10
Enter an age -- 13

A minor for another 5 years.
Enter a grade -- B

Good work
Enter the name of a tropical tree -- poinciana

Blossoms in June and July.

If

{USAGE 4}

Code 4-101

In

In Evaluates an expression to see if it is a member of a specified set.

FORMAT

exp in setexp {in is a set operator.}

ARGUMENTS

setexp A set expression.

exp An expression of the same data type as the elements constituting the base
type of setexp.

OPERATOR RETURNS

The result of an in operation is always Boolean.

DESCRIPTION

Use in to determine if exp is an element in set setexp. In returns either true or false.

EXAMPLE

PROGRAM in example;
{ This program prompts the user for a word, then counts the number of }
{ ordinary vowels (a, e, i, 0, and u) in the word. }

VAR
word
count_of_vowels
x

BEGIN

array [1 .. 20] of char .- [* of ' '];
integer16 := 0;
integer16;

write('Enter a word -- ');
readln (word) ;
for x := 1 to 20 do

if word[x] IN ['a', 'e', 'i', '0', 'u']
then count_of_vowels := count_of_vowels + 1;

writeln('This word contains', count_of_vowels:1, ' ordinary vowels.');
END.

4-102 Code

In

USING THIS EXAMPLE

Following is a sample run of the program named in_example:

Enter a word -- computers
This word contains 3 ordinary vowels.

Code 4-103

In_range Determines whether or not a specified value is within the defined integer subrange.
(Extension)

FORMAT

{in_range is a function.}

ARGUMENTS

x A variable having a scalar (Le., integer, Boolean, char, enumerated, or
subrange) data type. For most practical purposes, x must be an enumer­
ated or a subrange variable.

FUNCTION RETURNS

The in_range function returns a Boolean value.

DESCRIPTION

The in_range function returns true if the value of x is within its defined range; otherwise,
it returns false. The following program fragment demonstrates a possible use of in_range.
We want to use in_range in this example, because it generates very efficient code:

TYPE
small_int = -7 .. 7;

VAR
x : integer16;

BEGIN

4-104 Code

readln(x) ;
if IN_RANGE(Small_int(x»

then
else ...

EXAMPLE

PROGRAM in_range_example;
{This program demonstrates the use of the in_range function }

TYPE
possible_temperature_range 48 .. 97;

VAR

BEGIN
repeat

possible_temperature_range;
boolean;

write('Enter the current air temp. (in deg. fahrenheit) -- ');
readln(air_temp);
if not IN_RANGE(air_temp) then

begin
writeln('This temperature is out of the historical range.');
writeln;
stop := false;
end

else begin
writeln('This value is within the historical range.');
stop := true;

end;
until stop;

END.

USING THIS EXAMPLE

Following is a sample execution of the program named in_range_exampJe :

Enter the current air temp. (in deg. fahrenheit) -- 100
This temperature is out of the historical range.

Enter the current air temp. (in deg. fahrenheit) -- 47
This temperature is out of the historical range.

Enter the current air temp. (in deg. fahrenheit) -- 52

Code 4-105

Lastof

Lastof Returns the last possible value of a type or a variable. (Extension)

FORMAT

lastof(x)

ARGUMENTS

x

{lastof is a function.}

Either a variable or the name of a scalar data type. The data type can be
a predeclared Domain Pascal data type, or it can be a user-defined data
type. x cannot be a record, file, set, floating-point, or pointer type.

FUNCTION RETURNS

The lastof function returns a value having the same data type as x.

DESCRIPTION

The lastof function returns the final possible value of x according to the following rules:

Data Type of x Lastof Returns

integer or integer16 32767

integer32 2147483647

char A symbol indicating an unprintable
character; however, ord(lastof(char»
returns 255.

boolean True.

enumerated The last (rightmost) identifier in the
data type declaration.

array The upper bound of the subrange that
defines the array's size.

varying array The maximum length of the array.

The lastof function is particularly useful for finding the last value in an enumerated type.

EXAMPLE

See the example in the firstof listing earlier in this encyclopedia.

4-106 Code

Ln

Ln Calculates the natural logarithm of a specified number.

FORMAT

In (number) {In is a function.}

ARGUMENTS

number Any real or integer expression that evaluates to a positive number.

FUNCTION RETURNS

The In function always returns a real value (even if number is an integer).

DESCRIPTION

The In function returns the natural logarithm of number. Refer to the exp listing earlier in
this encyclopedia for a practical definition involving In.

EXAMPLE

PROGRAM In_example;
{ Each radioactive isotope has a unique K constant.}
{ This program uses LN and empirical data to calculate the k constant.}
VAR

starting_Quantity, ending_Quantity: real;
elapsed_time, k : real;

BEGIN

END.

write('Enter the Quantity at time zero -- ');
readln(starting_Quantity);
write('Enter the elapsed time (t) -- ');
readln(elapsed_time);
write('Enter the Quantity at time (t) -- ');
readln(ending_Quantity);
k := LN(starting_Quantity/ending_Quantity) * (1.0 / elapsed_time);
writeln('The k constant for this radioactive element is " k);

Code 4-107

Ln

USING THIS EXAMPLE

Following is a sample run of the program named In_example:

Enter the quantity at time zero -- 1230
Enter the elapsed time (t) -- 47
Enter the quantity at time t -- 753
The k constant for this radioactive element is 0.010

4-108 Code

Lshft

Lshft Shifts the bits in an integer a specified number of bit positions to the left. (Extension)

FORMAT

Ishft(num, sh) {Ishft is a function.}

ARGUMENTS

num, sh Integer expressions.

FUNCTION RETURNS

The Ishft function returns an integer value.

DESCRIPTION

The Ishft function shifts the bits in Dum to the left sh places. Lshft does not wrap bits
around from the left edge to the right; instead, Ishft shifts zeros in on the right. For exam­
ple, consider the following results:

VAR
i, n : INTEGERI6;

BEGIN
i := 2000; { 2#0000011111010000 10#+2000 }
LSFHT(i, 1) ; { 2#0000111110100000 10#+4000 }
LSHFT(i, 3) ; { 2#0011111010000000 10#+16000 }
LSHFT(i, 7) ; { 2#1110100000000000 10#-6144 }

Results are unpredictable if sh is negative.

Compare Ishft to rshft and arshft.

EXAMPLE

PROGRAM lshft_example;
{ThiS program demonstrates the use of the lshft function}
VAR

unshifted_integer, shifted_integer, shift_left, x : integerl6;
choice 0 .. 15;
drink_info: array[O .. 6] of integer16 := [* of 0];

Code 4-109

Lshft

BEGIN

{In the following subroutine, LSHFT acts as a multiplier according}
{to the equation LSHFT(num,sh) = num * (2 to the sh power). Beware}
{ of overflow when you use LSHFT for this purpose. }

unshifted_integer := 15; {15 is 0000000000001111 in binary}
shift_left := 3;
shifted_integer := LSHFT(unshifted_integer, shift_left);
writeln(unshifted_integer:5, ' times 2 to the' shift_left:l,

, power =' shifted_integer:l);

{The result will be 120.}
{120 is 0000000001111000 in binary.}

{You can also use LSHFT to pack information more effectively. For }
{example, suppose you asked 24 people to name their favorite soft }
{drink from a list of 16 possibilities. Since we can represent 16 }
{possibilities in 4 bits, we can store 4 people's responses in one }
{16-bit word in the following manner: }
{ }
{Bit # 0 3 4 7 8 11 12 15 }
{ --------------- ---------------- }
{ Response 1 Response 2 Response 3 Response 4 I}
{ --------------- ---------------- }
{ }
{Therefore, we will only need six 16-bit words to store the data }
{rather than 24 16-bit words. The following code uses the LSHFT }
{function to accomplish this data reduction. }

writeln;
for x := 0 to 23 DO

BEGIN
write('Enter the preference (0-15) of client'

x: 1, ' -- ');
readln(choice);
drink_info[x div 4] := drink_info[x div 4] !

LSHFT(choice, (4 * (x mod 4»);
writeln(DRINK_INFO[x DIV 4]);

END;
{You can also achieve this sort of packing with packed records. }

END.

USING THIS EXAMPLE

This program is available online and is named Ishft_example.

4-110 Code

Max

Max Returns the larger of two expressions. (Extension)

FORMAT

max (expJ ,exp2) {max is a function.}

ARGUMENTS

expJ, exp2 Any valid expression.

DESCRIPTION

Domain Pascal's max function returns the larger of the two input expressions. The argu­
ments expJ and exp2 must be the same type or must be convertible to the same type by
Pascal's default conversion rules (for example, integer converted to a real).

If expJ and exp2 are unsigned scalars or pointers, Domain Pascal performs an unsigned
comparison. (The unsigned scalar data types are non-negative subranges of integers,
Boolean, character, and enumerated.) If they are real, single, or double, a floating-point
comparison is done, while if they are signed integers, Domain Pascal performs a signed
comparison.

See also min.

EXAMPLE

PROGRAM max_example;
{This program demonstrates the use of the max function}
VAR

small_num, big_num, biggest : REAL;
BEGIN

big_num := 1000.0;
small_num := 2.0;
WHILE small_num <= big_num DO

BEGIN
small_num := SQR(Small_num);
big_num := SQRT(big_num);
biggest := MAX (small_num, big_num);
WRITELN ('The biggest number now equals' biggest);

END;
END.

Code 4-111

Max

USING THIS EXAMPLE

Following is a sample run of the program named max_example:

The biggest number now equals 3.162278E+Ol
The biggest number now equals 1.600000E+Ol

4-112 Code

Min

Min Returns the smaller of two expressions. (Extension)

FORMAT

min (expJ,exp2) {min is a function.}

ARGUMENTS

expJ, exp2 Any valid expression.

DESCRIPTION

Domain Pascal's min function returns the smaller of the two input operands. The argu­
ments expJ and exp2 must be the same type or must be convertible to the same type by
Pascal's default conversion rules (for example, integer converted to a real).

If expJ and exp2 are unsigned scalars or pointers, Domain Pascal performs an unsigned
comparison. (The unsigned scalar data types 'are non-negative subranges of integers,
Boolean, character, and enumerated.) If they are real, single, or double, a floating-point
comparison is done, while if they are signed integers, Domain Pascal performs a signed
comparison.

See also max.

Code 4-113

Min

EXAMPLE

program min_example;

var
storenum : integer;
lowprice, x, y, newprice1, newprice2 : real;

begin
{ The program finds the lowest discounted price for an item that two}
{ stores sell. The stores have different regular prices and are }
{ featuring different discount rates: 18% at the first, and 15% at }
{ the second. }

write ('Enter the regular price at the first store: ') ;
readln (x);
write ('Enter the regular price at the second store: ');
read In (y);

newprice1 := x - (x * 0.18);
newprice2 .- y - (y * 0.15);

lowprice :- MIN(newpricel,newprice2);
if lowprice = newprice1 then

storenum := 1
else

storenum := 2;

write ('The best discounted price is at store number " storenum:1);
writeln (' and it is " lowprice:6:2);
end.

USING THIS EXAMPLE

Following is a sample run of the program named min_example:

Enter the regular price at the first store: 1599.99
Enter the regular price at the second store: 1515.15
The best discounted price is at store number 2 and it is 1287.88

4-114 Code

Mod

Mod Calculates the remainder upon division of two integers.

FORMAT

dl mod d2 {mod is an operator.}

ARGUMENTS

dl, d2 Any integer expressions.

OPERATOR RETURNS

The mod operator returns an integer value.

DESCRIPTION

Domain Pascal's mod operator works like standard Pascal's mod operator when dl is posi­
tive. When dl is negative and you compile without the -iso switch, Domain Pascal's mod
operator works in a nonstandard manner.

When d 1 Is Positive

The expression (dl MOD d2) produces the remainder of dl divided by d2. Therefore,
the expression (dl MOD d2) always evaluates to an integer from 0 up to, but not includ­
ing, I d21. For example, consider the following results:

9 MOD 3 is equal to 0
10 MOD 3 is equal to 1
11 MOD 3 is equal to 2
12 MOD 3 is equal to 0
13 MOD 3 is equal to 1
13 MOD -3 is equal to 1

(To find the quotient (Le., nonfractional) portion of the division, use the div operator de­
scribed earlier in this encyclopedia.)

When dl Is Negative

If dl is negative, then (dl MOD d2) equals

-1 * remainder of Id11 divided by Id21

Code 4-115

Mod

For example, consider the following results:

-9 MOD -3 is equal to 0 -9 MOD 3 is equal to 0
-10 MOD -3 is equal to -1 -10 MOD 3 is equal to -1
-11 MOD -3 is equal to -2 -11 MOD 3 is equal to -2
-12 MOD -3 is equal to 0 -12 MOD 3 is equal to 0
-13 MOD -3 is equal to -1 -13 MOD 3 is equal to -1

Compiling with the -iso Switch

If you compile with the -iso switch (described in Chapter 6), mod follows the standard
Pascal rules. That is, mod returns a value result such that:

result := dl - (dl DIV d2) * d2

Since a negative modulus is illegal under standard Pascal rules, if result is negative, then:

result := result + d2

EXAMPLE

PROGRAM mod_example;
{This program uses the MOD function to find the coming leap years.}

CONST
cycle = 4;

VAR
remainder, year: integerl6;

BEGIN
for year := 1985 to 1999 do

begin

end;

remainder .- year MOD cycle;
if remainder = 0

then writeln(year:4, ' is a leap year');

END.

USING THIS EXAMPLE

If you execute the sample program named mod_example, you get the following output:

1988 is a leap year
1992 is a leap year
1996 is a leap year

4-116 Code

New

New Allocates space for storing a dynamic variable.

FORMAT

new(p) {Short form. New is a procedure.}

new(p, tag], ... tagH) {Long form.}

ARGUMENTS

tag

p

DESCRIPTION

An input argument that names one or more constants. Tag is valid only if
p" is a record. The maximum number of tags is the number of tag fields
in the record to which p points.

A pointer variable used for input and output. Pascal creates a dynamic
variable of the type to which p points. After allocating this variable, Pas­
cal returns the address of the newly allocated dynamic variable into p.
The contents of the address pointed to is undefined. If there was insuffi­
cient address space or disk space remaining to satisfy the request for dy­
namic memory, then Domain Pascal returns the value nil in p.

New causes Pascal to allocate enough space for storing one occurrence of a dynamic vari­
able. You use new to create dynamic space and dispose (described earlier in this encyclo­
pedia) to deallocate the dynamic space.

You can use the short form of new to allocate any kind of dynamic variable. The long
form of new is only useful for allocating dynamic variant records.

The Short Form

Consider the following record declaration:

TYPE

VAR

employeepointer = "employee;
employee = record

first_name array[l .. lO] of char;
last_name array[1 .. 14] of char;
next_emp employeepointer;

end;

current_employee employeepointer;

Code 4-117

New

If you want to store employee records dynamically, then you must call NEW(current_em­
ployee) for every occurrence of an employee. To allocate space for 100 employees, call
NEW(current_employee) 100 times. You can assign values to an employee record only
after Pascal has allocated space for an occurrence.

The Long Form

Pascal uses tagl..tagN to help determine the amount of space to allocate for a variant re­
cord. Tagl..tagN corresponds to the tag fields of the variant record. For example, con­
sider the type declaration for the following variant record:

TYPE
emp_stat (exempt, nonexempt);
workerpointer Aworker;
worker = record

first_name array[l .. 10] of char;
last_name array[1 .. 14] of char;

VAR

next_emp workerpointer;
CASE emp_stat OF

end;

exempt (salary
nonexempt : (wages

plant

current_worker : workerpointer;

integer16) ;
single;
array[l .. 20] of char);

Because worker contains a tag field, you have the option of passing the value of a constant
to new; for example:

NEW (current_worker , exempt)

Since tag1 is exempt, when Domain Pascal allocates space for one worker record, it allo­
cates two bytes for the variant portion (since integer16 takes up only two bytes). If tag1
had been nonexempt, Domain Pascal would have allocated the space necessary (24 bytes)
to hold it.

Note that the number of constants you pass to new must be less than or equal to the num­
ber of tag fields in the record declaration.

4-118 Code

New

For machines with a larger address space (DNx60 machines, DN3000, etc.), you can ac­
cess that larger amount of space by performing the following two steps:

1. Use new to allocate a large amount of memory (such as a megabyte) at the begin­
ning of the program's execution.

2. Immediately after allocating the memory, use dispose to deallocate it.

These steps cause the operating system to increase the number of memory pages it allo­
cates to your program. You should only use this technique if it is possible that your pro­
gram may run out of address space.

EXAMPLE

{The following example uses NEW and DISPOSE to create and disassemble}
{a linked list. For a description of the theory of linked lists, }
{consult a Pascal tutorial. }

TYPE
studentpointer = A student;
student record

name: array[1 .. 30] of char;
age : integer16;
next student : studentpointer;

end;
VAR

base
a_name
an_age
option
done

studentpointer;
array[1 .. 30] of char;
integer16;
char;
boolean;

Procedure error_message; {gives a message if student not on list}
begin
writeln;
writeln('That person is not on the list. Let"s try again.');
writeln
end;

Code 4-119

New

Procedure print_list; { Print the linked list in order. }
VAR

ns : studentpointer;
BEGIN

END;

ns := base;
writeln;
while ns <> NIL do

with NS" do
begin

writeln(name, ' age);
ns .- next_student;

end;

Procedure Enter_data;
VAR

ns, previous : studentpointer;
BEGIN

base := nil;
repeat

write('Enter the name of a student (or end to stop) -- ');
readln(a_name);
if a_name <> 'end' then

begin
NEW(ns);

{ allocate space for a new occurrence of a student.}
write('Enter his or her age -- '); readln(an_age);

end

if base = nil
then base := ns {set base to first record. }
else previous".next student := ns;

- {add record to end of list.}
ns".name := a_name; {Initialize fields of new record. }
ns".age := an_age;
nS".next_student := nil;
previous := ns; { Save pointer to this new student }

until a_name = 'end';
END;

4-120 Code

Procedure delete_a_student;
VAR

ns, previous : studentpointer;
BEGIN

previous := base;
ns := base;
write('What is the name of the student you want to delete? -- ');
read In (a_name) ;

while ns <> nil do
begin

if ns A.name = a_name then {delete record}
begin

end
else

if ns = base then
base := nsA.next_student

else
previousA.next_student .- nSA.next_student;

DISPOSE (ns) ;
exit;

begin
previous := ns;
ns := nsA.next_student;
if ns = nil then error_message;

end; {if}
end; {while}

END; {delete_a_student}

BEGIN {main}
base := nil;
enter_data;
print_list;

repeat
if base = nil then return;

New

write('Do you want to delete a student from the list? (y or n)--');
readln(option);
done := not (option in ['y', 'Y']);
if not done then

begin
delete_a_student;
print_list;

end
until done;

END.

Code 4-121

New

USING THIS EXAMPLE

Following is a sample run of the program named build_8_linked_list:

Enter the name of a student (or end to stop) Kerry
Enter his or her age -- 28
Enter the name of a student (or end to stop) Jan
Enter his or her age -- 27
Enter the name of a student (or end to stop) Lance
Enter his or her age -- 29
Enter the name of a student (or end to stop) end

Kerry 28
Jan 27
Lance 29
Do you want to delete a student from the list? (y or n) -- y
What is the name of the student you want to delete? -- Jan

Kerry 28
Lance 29
Do you want to delete a student from the list? (y or n) -- n

4-122 Code

Next

Next Jump to the next iteration of a for, while, or repeat loop. (Extension)

FORMAT

Next is a statement that neither takes arguments nor returns values.

DESCRIPTION

You use next to skip over the current iteration of a loop. You can only use next within a
for, while, or repeat loop. If next appears elsewhere in a program, Domain Pascal issues
an error. Next tells Domain Pascal to ignore the remainder of the statements within the
body of the loop for one iteration. For instance, consider the following example:

FOR x := 5 to 35 do
begin

if (x MOD 10)

end;

o then NEXT;

When x is 10, 20, or 30, Domain Pascal ignores the statements following the next. You
can use a goto statement instead of a next statement. For example, you can rewrite the
preceding example to look like the following:

FOR x := 5 to 35 do
begin

if (x MOD 10)

100: end;

o then GOTO 100;

Code 4-123

Next

EXAMPLE

PROGRAM next example;
{ This prog~am counts the occurrences of the digits 0 through 9 in }
{ a line of integers and real numbers. }

CONST
blank = , '. ,
decimal_point

VAR
dig : char;

, ' . . ,

count_digits: array[48 .. 57] of integer16 .- [* of 0];
x : integer16;

BEGIN
writeln('Enter a line of integers and real numbers:');
repeat

read(dig) ;
if «dig = blank) or (dig = decimal_point» then NEXT;
write(dig, ' ');
count_digits[ord(dig)] := count_digits[ord(dig)] + 1;

until eoln;
writeln;
for x := 48 to 57 do
writeln(count_digits [x] :2, ' of the digits were'

END.

USING THIS EXAMPLE

Following is a sample run of the program named next_example:

Enter a line of integers and/or real numbers.
1741374.13 33 821
174 1 3 74133 8

0 of the digits were Os
4 of the digits were Is
1 of the digits were 2s
4 of the digits were 3s
3 of the digits were 4s
0 of the digits were 5s
0 of the digits were 6s
2 of the digits were 7s
1 of the digits were 8s
0 of the digits were 9s

4-124 Code

chr (x) : 1, ' s') ;

Nil

Nil A special pointer value that points to nothing.

FORMAT

Nil is a predeclared constant, except when the code has been compiled with the -iso op­
tion. When the -iso option has been used, nil is a reserved word. You can only use nil
in expressions. Nil is a pointer value; therefore, you must assign it to or compare it to a
pointer variable. Nil never points to an object.

DESCRIPTION

Use nil when you must assign a value to a pointer, but you don't know what that value
should be. For example, when creating a linked list, you can set the last record in the list
to point to nil. Then, when walking through the list, you can easily find the end of the list
by checking for nil.

EXAMPLE

For a sample program that uses nil, refer to the listing for new earlier in this chapter.

Code 4-125

Not

Not Returns true if an expression evaluates to false.

FORMAT

not b {not is a unary operator.}

ARGUMENTS

b

OPERATOR RETURNS

Any Boolean expression.

The result of a not operation is always a Boolean value.

DESCRIPTION

If b evaluates to false, then not b evaluates to true. If b evaluates to true, then not b
evaluates to false.

Note that you can put and or or immediately before not. Note the order of precedence in
an expression like the following:

a AND NOT b actually means a AND (NOT b)

Another potentially confusing expression is the following:

NOT a AND b actually means (NOT a) AND b

Please refer to the order of precedence rules in Table 4-3.

4-126 Code

EXAMPLE

PROGRAM not example;
{This program demonstrates the use of the not operator}

VAR
pet_lover, timid: boolean;

BEGIN
writeln('Career aptitude test.', chr(lO»;
write('You like pets (true or false) '); readln(pet_lover);
write('You are timid (true or false) -- '); readln(timid);

if pet_lover and NOT timid
then writeln('Have you considered becoming a lion tamer?')

Not

else writeln('Plastics ... there"s a great future in plastics.');
END.

USING THIS EXAMPLE

This program is available online and is named not_example.

Code 4-127

Odd

Odd Tests whether the specified integer is an odd number.

FORMAT

odd (i) {odd is a function.}

ARGUMENT

Any integer expression.

FUNCTION RETURNS

The odd function returns a Boolean value.

DESCRIPTION

Odd returns true if i is an odd integer and false if i is an even integer.

EXAMPLE

PROGRAM odd_example;
{ThiS program demonstrates the use of the odd function}

VAR
i : integer;

BEGIN
write('Enter an integer -- ');
readln(i);
if ODD(i)

then writeln(i:1, ' is an odd number.')
else writeln(i:l, ' is an even number.');

END.

USING THIS EXAMPLE

Following is a sample run of the program named odd_example:

Enter an integer -- 14
14 is an even number.

4-128 Code

Of

Of Refer to Case earlier in this encyclopedia.

Code 4-129

Open

Open Opens a file so that you can eventually read from or write to it. (Extension)

FORMAT

open(jile_variable, pathname, file_history, error _status, buffer_size); {open is a procedure.}

ARGUMENTS

file variable A variable having the text or file data type.

pathname The name of the file that you want to open. Pathname is a string con­
stant or string variable, that you specify in any of the following five ways:

4-130 Code

• Enter a Domain pathname as defined in Getting Started with Domain/OS.

• Enter a string in the form 'An', where n is an integer from 1 to 9. n corresponds
to the ordinal value of the arguments that the user passes to the program when he
or she executes or debugs the program. For example, suppose you compile Do­
main Pascal source code to create executable object file sample.bin. You can pass
the two arguments xxx and yyy by executing the program as follows:

$ sample. bin xxx yyy

The preceding command line causes Domain Pascal to assign xxx to ,A l' and yyy
to '''2'.

• Enter a string in the form '·prompt-string'. At run time, Domain Pascal prints the
prompt-string at standard output, and then reads the user's response from stan­
dard input. (The response should be the name of the file to be opened.) The
prompt-string can contain any printable character except blanks; Domain Pascal
stops printing at the first blank it encounters. An asterisk by itself tells Domain
Pascal to read the response from standard input without printing a prompt at stan­
dard output.

• A string in the form '-STDIN' or '-STDOUT'. These strings correspond to the
streams that the operating system opens automatically. However, specifying one of
these strings does not cause an error. (See Chapter 8 for an explanation of
streams.)

• A variable or constant containing any of the preceding items.

Open

file_history A variable or string that tells the open procedure how to open the file.
The variable or string must have one of the following three values:

• 'NEW' - If the file exists, Domain Pascal reports an error. If the file does not
exist, Domain Pascal creates the file and then opens it.

• 'OLD' - If the file exists, Domain Pascal opens it. If the file does not exist, Do­
main Pascal reports an error.

• 'UNKNOWN' - If the file exists, Domain Pascal opens it. If the file does not ex­
ist, Domain Pascal creates the file and then opens it.

DESCRIPTION

Remember to enclose the file_history within single quotes (for example, 'NEW').

An optional argument. If you specify an error_status, it must have an in­
teger32 data type. At run time, Domain Pascal returns a hexadecimal
number into error _status which has the following meaning:

o - no error or warning occurred.

greater than 0 - an error occurred.

less than 0 - a warning occurred.

Your program is responsible for handling any errors. We detail error handling in
Chapter 9.

An optional argument that may only be specified for files of type text.
Buffer _size must be at least as long as the longest line in the file being
read; if it is shorter, the excess characters in a line are truncated. If the
file is open for writing only, you don't need to specify a large buffer_size.
No data is lost even if a line being written is longer than buffer _size. The
default size is 256 bytes.

Before you can read from or write to a file, you must first open it for I/O operations. To
open a permanent file, you must use the open procedure. To open a temporary file, use
the rewrite procedure without using an open procedure.

After you've opened a file, you then specify whether it is available for reading (by calling
reset) or for writing (by calling rewrite). Note that you do not need to open the standard
input (input) and standard output (output) files before attempting to read from or write to
them. They are always open.

When your program terminates, the operating system automatically closes all opened files;
however, please refer to the description of the close procedure earlier in this chapter.

For a complete overview of Domain I/O, see Chapter 8.

Code 4-131

Open

EXAMPLE

Program open_example;

{NOTE: Before running this program, you must obtain file "annabel_lee" }
{
{
{
{
{
{
{

and store it in the same directory as the program. }
This program uses a variety of techniques to open three files. }
In order for it to work properly, you must pass the pathname of a }
file as the first argument on the execution or debug command line. }
For example, if you compile this program to create open_example. bin, }
then you could invoke the program with the following command: }

$ open_example. bin //arnie/nouveau/comps }

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%LIST;

CONST
name_of_file
file3

'annabel_lee';
'*enter_a_filename--';

VAR

poem, paragraph, stanza
statrec

text;
status_$t;

BEGIN
{ Open an existing file.}

OPEN (poem, name_of_file, 'OLD', statrec.all);

{ If there was no error on open, then specify that the file be }
{ open for reading. }

if statrec.all = 0
then begin

writeln('Opened' name_of_file, ' for reading');
reset (poem)

end
else writeln('Difficulty opening

{ Open a new file. The pathname of the new file will be the first }
{ argument that you pass on the execution or debug command line. }

OPEN (paragraph , 'Al', 'NEW', statrec.all);

4-132 Code

Open

{ If there was no error on open, then specify that the file be open}
{ for writing. If there was an error, print the error code. }

if statrec.all = status_Sok
then rewrite(paragraph)
else begin

writeln(chr(lO), 'Did you remember to pass an argument');
writeln('to the command line?');
writeln('error code = " statrec.all, chr(lO»;

end;

{ Open a file that mayor may not exist. Prompt user for name of }
{ file at runtime. }

OPEN (stanza , file3, 'UNKNOWN', statrec.all);

{ A slightly more sophisticated method of error reporting is to use
{ the system call ERROR_SPRINT to print the error message.
{ NOTE: In order to call ERROR_SPRINT, you must specify both

}
}
}

{ /sys/ins/base.ins.pas and /sys/ins/error.ins.pas as %INCLUDE
if statrec.all = status_Sok

files.}

then rewrite(stanza)
else ERROR_SPRINT(statrec);

END.

USING THIS EXAMPLE

This program is available online and is named open_example.

Code 4-133

Or, Or Else

lOr, Or Else Calculate the logical or of two Boolean arguments.

•

•

FORMAT

x or y {or is an operator.}
x or else y {or else is an operator.}

ARGUMENTS

x, y Any Boolean expressions.

OPERATOR RETURNS

The result of an or or an or else operation is always a Boolean value.

DESCRIPTION

Use or to find the logical or of expressions x and y. Here is the truth table for or:

Table 4-12. Truth Table for Logical or Operator

x y Result

true true true
true false true
false true true
false false false

Compare or to and and not (which are described elsewhere in this encyclopedia).

NOTE:

4-134 Code

Some programmers confuse or with the exclamation point (I) op­
erator. I is a bit operator; it causes Domain Pascal to perform a
logical or on all the bits in its two arguments. For example, com­
pare the following results:

(true OR false) is equal to true
(75 ! 15) is equal to 79

Refer to the "Bit Operators" listing earlier in this encyclopedia.

Or, Or Else

The Boolean operator or else is a Domain extension to standard Pascal. You can use or
else in any statement where you use or in standard Pascal. The choice between or and or
else, however, affects the run-time evaluation of a statement.

When or else appears between two Boolean operands, the system begins evaluating the
operands in the order in which they appear. If the first operand is true, the system does
not evaluate the second. If one operand is true, then the entire expression is true.

Hence, or else guarantees "short-circuit" evaluation. That is, at run time, the system
evaluates an operand only if necessary.

For example, in the statement

IF boolean 1 OR ELSE boolean_2
THEN ...

the system first evaluates boolean_I. If boolean_l is true, the system does not evaluate
boolean_2. In this statement, boolean_l and boolean_2 can be any valid Pascal Boolean
expressions. The operator or else can be more efficient than or. For example, in the
statement

IF boolean 1 OR boolean_2
THEN ...

the system may have to evaluate both boolean_l and boolean_2 to test if the statement is
true. Also, there is no guarantee that the system will evaluate the two expressions in the
order in which they appear.

The or else operator helps you avoid nested constructions. For example, compare the
standard Pascal code on the left with the equivalent Domain Pascal code on the right:

Standard Pascal

IF c1 THEN
51

ELSE
IF c2 THEN

51:

Domain Pascal

IF c1 OR ELSE c2 THEN
51;

In this example, the standard Pascal code contains an if/then/else statement with another
if statement nested inside it. The Domain Pascal code, however, contains only one if
statement.

Code 4-135

Or, Or Else

The following example illustrates how to avoid taking the log of 0.0:

REPEAT
i .- i + 1;
f.- a[i);

UNTIL f = 0.0 OR ELSE In(f) < 2.0;

EXAMPLE

PROGRAM or_example;
{This program demonstrates the use of the or operator}

VAR
tall, good_jumper, good_athlete boolean;

BEGIN
writeln('Career aptitude test.', chr(10»;
write('You are taller than 1.95 meters (true or false) -- ');
readln(tall);
write('You can jump high (true or false) -- ');
readln(good_jumper);
write('You are athletic (true or false) -- ');
readln(good_athlete);

if (taIlOR good_jumper) AND good_athlete
then writeln(chr(10) ,'Have you considered playing pro basketball.')
else writeln(chr(10), 'Computers are a stable field.');

END.

USING THIS EXAMPLE

This program is available online and is named or_example.

4-136 Code

Ord Returns the ordinal value of a specified integer, Boolean, char, or enumerated expression.

FORMAT

ord(x) {ord is a function.}

ARGUMENT

x Any scalar (i.e., integer, Boolean, char, or enumerated) expression.

FUNCTION RETURNS

The ord function returns an integer value.

DESCRIPTION

The ord function returns the ordinal value of x according to the following rules:

Data Type of x

Integer

Boolean

Char

Enumerated

Ord Returns

Numerical value of x.

o if x is false and 1 if x is true.

x's ASCII value. Appendix B contains an ISO
Latin-1 table that includes ASCII values.

An integer representing x's position within the
enumeration declaration. For instance, in
program ord_example, ORD (rice) returns
0, ORD(tofu) returns 1, and so on up until
ORD (tamari), which returns 4.

Note that the chr function is the inverse of ord.

Ord

Code 4-137

Ord

EXAMPLE

PROGRAM ord_example;
{This program demonstrates the use of the ord function}

TYPE
macro

VAR

(rice, tofu, seaweed, miso, tamari);

c char;
e macro;

BEGIN
c := 'd';
WRITELN('The ordinal value of " c, ' is

e := seaweed;
WRITELN('The ordinal value of' e:7,' is

END.

USING THIS EXAMPLE

ORD (c) : 3) ;

ORD(e) : 1) ;

If you execute the sample program named ord_example, you get the following output:

The ordinal value of d is 100
The ordinal value of SEAWEED is 2

4-138 Code

Pack

Pack Copies an unpacked array to a packed array.

FORMAT

pack (unpacked_array, index, packed_array) {pack is a procedure.}

ARGUMENTS

unpacked_array An array that has been defined without the keyword packed.

index A variable that is the same type as the array bounds (integer, boolean,
char, or enumerated) of unpacked_array. Index designates the array ele­
ment in unpacked_array from which pack should begin copying.

An array that has been defined using the keyword packed.

DESCRIPTION

Pack copies an unpacked array to a packed one. However, data access with unpacked ar­
rays generally is faster since data elements are always aligned on word boundaries.

Unpacked_array and packed_array must be of the same type, and for every element in
packed_array, there must be an element in unpacked_array. That is, if you have the fol­
lowing type definitions

TYPE
x array[i .. j] of single;
y packed array[m .. n] of single;

the subscripts must meet these requirements:

j - index >= n - m {"index" as set in the call to pack}

For example, it is legal to use pack on two arrays defined like this:

TYPE
big_array
small_array

VAR

array[1 .. 100] of integer;
packed array[l .. 10] of integer;

grande
petite

big_array;
small_array;

Code 4-139

Pack

You use index to indicate the array element in unpacked_array from which pack should
begin copying. For instance, given the previous variable declarations and assuming variable
i is an integer, this fragment

i := 1;
pack (grande , i, petite);

tells pack to begin copying at grande[I]. Pack keeps copying until it reaches the highest
index value that petite can take-which in this case is 10. The remaining elements in
grande are not copied.

Index can take a value outside of packed_array's defined subscripts. That is, if in the ex­
ample above, i equals 50, pack copies these values this way:

petite[1] := grande[50];
petite[2] .- grande [51] ;

petite[10] := grande [59] ;

See the listing for unpack later in this encyclopedia.

EXAMPLE

PROGRAM pack_example;
{ThiS program demonstrates the pack procedure}

TYPE

VAR

uarray
parray

array[1 .. 50] of integer16;
packed array[1 .. 10] of integer16;

full_range
sub_range
i, j

uarray;
parray;
integer16;

BEGIN
for i := 1 to 50 do

full_range[i] := i;
j := 20;
PACK(full_range, j, sub_range);
writeln ('The packed array now contains: ');
for i := 1 to 10 do

writeln (' sub_range [' • i:2. '] = '. sub_range[i] :2);

END.

4-140 Code

Pack

USING THIS EXAMPLE

If you execute the sample program named pack_example, you get the following output:

The packed array now contains:
sub_range [1] 20
sub_range [2] 21
sub_ranger 3] 22
sub_ranger 4] 23
sub_ranger 5] 24
sub_range [6] 25
sub_range [7] 26
sub_ranger 8] 27
sub_ranger 9] 28
sub_range [10] 29

Code 4-141

Page

Page Inserts a formfeed (page advance) into a file.

FORMAT

page(/) {page is a procedure.}

ARGUMENT

I

DESCRIPTION

A text variable. I is optional. If you do not specify I, page assumes that
the file is standard output (output).

Use the page procedure to insert a formfeed (ISO Latin-1 character 12) into the file
specified by I. Page is useful for formatting text that will be printed or for text that meets
fixed-length window dimensions. If you print the file on a line printer, the printer ad­
vances to the next page when it encounters the formfeed.

Before calling page, you must open the file named in I for writing. See Chapter 8 for a
description of opening files.

4-142 Code

Page

EXAMPLE

PROGRAM page_example;
{This program demonstrates the PAGE procedure.}

CONST
lines_in_a_page 54; {Our printer prints 54 lines to a page.}

VAR
information
statint
x

BEGIN

text;
integer32;
integer16;

{ Create a file and open it for writing; exit on error. }
open(information, 'square_root_table', 'NEW', statint);
if statint = 0 then

rewrite (information)
else

begin
writeln('Pascal reports error', statint, ' on OPEN.');
return;
end;

{Print the square roots from 1 to 200, inserting }
{formfeeds where needed. }

for x := 1 to 200 do
begin
writeln(information, 'The square root of' x:3, ' is
if «x mod lines_in_a_page) = 0) then

PAGE(information);
end;

END.

USING THIS EXAMPLE

This program is available online and is named page_example.

sqrt(x»;

Code 4-143

Pointer Operations

Pointer Operations

Chapter 3 explains how to declare pointer types. Here, we describe how to use pointers in
the action part of your program.

DESCRIPTION

You can do the following things with a pointer variable:

• Use the addr function to assign the virtual address of a variable to the pointer
variable.

• Compare or assign the value of one pointer variable to another compatible pointer
variable.

• De-reference a pointer variable. De-referencing means that you find the contents
of the variable to which the pointer variable was pointing.

The following program fragment does all three things:

Program test;

TYPE
pi ~integer16;

VAR
plquart, p2quart
quartl, quart2

pi;
integer16 .- 5;

BEGIN
plquart
p2quart
quart2

.- addr(quartl);
:= plquart;
. - p2quart ~ ;

END.

Manipulating Virtual Addresses-Extension

Domain Pascal supports type transfer functions that are quite useful in manipulating virtual
addresses. For example, you cannot directly write a pointer value to a text file; however,
you can use a type transfer function to transfer the address to an integer32 value (which
can be written).

4-144 Code

Pointer Operations

For example, compare the right and wrong ways to write the virtual address of quart! to
output:

writeln(plquart);
writeln(integer32(plquart»;

{wrong}
{right}

Invoking Procedure and Function Pointers-Extension

You de-reference a procedure or function pointer like any other pointer; that is, with the
caret (A). In this way, functions can return pointers to other functions; for example:

TYPE

VAR

retbool = "'function : boolean;
retfunptr = "'function : retbool;

xp : retbool;
rf : retfunptr;
flag : boolean;

FUNCTION myfunc; retbool;

rf := ADDR(myfunc);
xp : = rf"';
flag := xp"';

The expression rfA invokes the myfunc function, which returns a pointer to a function that
returns a Boolean value. You cannot use the following assignment

flag := rf ;

because you cannot de-reference the return value of a function call.

Addressing Procedure and Function Pointers-Extension

To obtain procedure and function addresses, use the predeclared function addr. Thus,
there is no ambiguity about a function reference, especially one with no parameters. It is
either invoked by name only, or its address is taken by the addr function.

Although the addr function has been declared to return a univ _ptr, the compiler adds
extra type checking whenever you try to pass a procedure or function address to a specific

Code 4-145

Pointer Operations

procedure or function pointer. In the assignment pptr := addr(proc2) from the following
program fragment, the declaration for proc2 must exactly match the template for the pro­
cedure type of pptr. If not, the compiler reports an error. If, however, the assignment is
to a univ_ptr, like xxx := addr(funcl), the compiler cannot do this extra type checking.

VAR
xxx

pptr
UNIV_PTR;
AProcedure(IN i, j

OUT a
VAR r

integer;
char;
real); EXTERN;

BEGIN

xxx .- funcl; {This is a call.}

xxx .- addr(funcl); {This takes the address.}

pptr := addr(proc2); {This takes the address and cheeks.}

4-146 Code

Pred

Pred Returns the predecessor of a specified ordinal value.

FORMAT

pred(x) {pred is a function.}

ARGUMENT

x An integer, Boolean, char, or enumerated expression.

FUNCTION RETURNS

The pred function returns a value having the same data type as x.

DESCRIPTION

Pred returns the predecessor of x according to the following rules:

Data Type of x

Integer

Boolean

Char

Enumerated

Pred Returns

The numerical value equal to x-J.

False-even if x already equals false.

The character with the ISO Latin-l value one less than
the ISO Latin-l value of x. If this character (x-J)
does not exist, Domain Pascal cannot detect the error.

The identifier to the left of x in the type declaration.
If x is the leftmost identifier, pred's return value is
undefined.

pred(firstof(x» generally is undefined; however, Domain Pascal does not report an error.
Domain Pascal also doesn't report an error if you specify an integer value that is outside
the range of the specified integer type. Therefore, your program should test for an out-of­
bounds condition.

Compare the pred function to the succ function.

Code 4-147

Pred

EXAMPLE

PROGRAM pred_example;
TYPE

jours = (lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche);

VAR
i
cl, c2
semaine

BEGIN

integer;
char;
jours;

i := 53; cl:= 'n'; semaine:= vendredi;
writeln('The predecessor of' i:2,' is " pred(i):2);
c2 := pred(cl);
writeln('The predecessor of' cl:l,' is " c2);
writeln('The predecessor of' semaine:8,' is' pred(semaine):8);

END.

USING THIS EXAMPLE

If you execute the sample program named pred_example, you get the following output:

The predecessor of 53 is 52
The predecessor of n is m
The predecessor of VENDREDI is

4-148 Code

JEUDI

Ptoc

Ptoc Appends a null byte to a variable-length string. (Extension)

FORMAT

ptoc(string) ; {ptoc is a procedure.}

ARGUMENTS

string A variable-length string.

DESCRIPTION

ptoc appends a null byte to the body of a variable-length string. The address of the
string's body can then be passed to routines that expect a C-style, null-terminated string.
The length field is not changed, so that the null character will not be visible in Pascal ex­
pressions that access the array.

When variable-length strings are allocated by the Pascal compiler, they are padded with at
least one byte in order to guarantee that ptoc will not write beyond the bounds of the
string even if its current run-time size is the maximum size of the string.

See the description of ctop for information about converting a null-terminated string into a
variable-length string.

EXAMPLE

In the following example, the Pascal program calls a C function called strip_extra_spaces
that converts substrings of two or more space characters into a single space character.
Note that we pass the body field rather than the variable-length string because the C func­
tion expects a pointer to a char, not a pointer to a structure.

PROGRAM ptoc_and_ctop_example;
{This program demonstrates the use of the ptoc and ctop }
{procedures. It calls an external C module, which is }
{named strip_extra_spaces. You must compile the C }
{module and bind it with ptoc_and_ctop_example.bin to }
{create an executable program. }
TYPE

str ARRAY[l .. lOO] of CHAR;
VAR

VARYING [100] of CHAR;

Code 4-149

Ptoc

PROCEDURE strip_extra_spaces (IN OUT s

BEGIN
var_string := 'This string has
strip_extra_spaces(var_string.body);

str); OPTIONS(EXTERN);

too many spaces';

{ The length has not been changed, so the following writeln }
{ procedure outputs extra characters. }

writeln(var_string);

{ Calling CTOP changes the current length by searching for }
{ the terminating null. }

CTOP(var_string);
writeln(var_string);
var_string := 'This string has too many spaces';
var_string.length := 30; {Change the length explicitly}

{ PTOC places a null char at the 31st position. }
PTOC(var_string);
strip_extra_spaces(var_string.body);
CTOP(var_string);
writeln(var_string);

END.

/*This module is called by the Pascal program named */
/*ptoc_and_ctop_example. */
#define SPACE 32
#define NUL 0
void strip_extra_spaces(s)
char *s;
{

}

char *start
while (*s)
{

}

if «*start++
while (*s

s++;

*start = NUL;

s;

*s++) == SPACE)
SPACE)

USING THIS EXAMPLE

Executing this program, named ptoc_and_ctop_example, produces the following output:

This string has too many spacesny spaces
This string has too many spaces
This string has too

4-150 Code

Ptoc

The first writeln procedure outputs the string before we have changed the current length.
Even though the string was shortened by strip_extra_spaces, Pascal has no knowledge of
the new length, so it outputs the number of characters indicated by the old length.

Before the second writeln procedure, we call ctop, which adjusts the current length by
searching for the null character implanted by the C function. This is the proper usage of
ctop.

The last writeln call illustrates what happens when you explicitly change the length field.
In this case, we change the length to 30, then we call ptoc which inserts a null character
at the 31st position. This makes the new length known to the C function. The strip_ex­
tra_spaces function, therefore, looks only at the first 30 characters. Note that we need to
call ctop again to change the length field after the C function has shortened the string.

Code 4-151

Put

Put Writes to a file.

FORMAT

put(f) {put is a procedure.}

ARGUMENT

f A variable having the file or text data type.

DESCRIPTION

If f is a file variable, then put(f) appends one record to the file symbolized by f. If f is a
text variable, then put(f) appends one character to the file symbolized by f.

Before calling put (f) , you must assign a record or character to fA. So the sequence for
writing out data looks like the following:

fA := record_or_character;
PUT(f);

For example, the following program fragment demonstrates output via the put procedure:

VAR

BEGIN

4-152 Code

primes
poem
a number
a_letter

file of integer16;
text;
integer16;
char;

a_number := 17;
primes A := a_number;
PUT(primes); { Append 17 to the file symbolized by primes. }

a_letter :=
poem" : =
PUT (poem) ;

'Q' ;
a letter;
- {APpend 'Q' to the file symbolized by poem. }

Note that the three statements

a_letter :=
poem"" :=
PUT(poem);

'Q';
a_letter;

{ Append 'Q' to the file symbolized by poem. }

are identical to the two statements

a_letter := 'Q';
write (poem, a_letter);

You must open I for writing (with rewrite) before calling put.

NOTE:

EXAMPLE

When you want to close the text file on which you were perform­
ing puts, your program should issue a writeln to the file just be­
fore closing it. This is in order to flush the file's internal output
buffer. If you don't include the writeln, the last line of the file
may not be written.

PROGRAM put_example;

{ This program builds a file of student records in file 'hislOl'. }

CONST
file to write to

TYPE
student =

record

'hislOl';

name array[1 .. 12J of char;

VAR

age integer16;
end;

class
a_student
iostat

FILE OF student;
student;
integer32;

Put

Code 4-153

Put

BEGIN

{ Opens file hislOl for writing. }
open(class, file_to_write_to, 'NEW', iostat);
if iostat = 0

then rewrite(class)
else return;

{ Prompt users for input. }
repeat

writeln;
write('Enter the name of a student -- ');
readln(a_student.name);
if a_student.name = 'end' then exit;
write('Enter the age of this student -- ');
readln(a_student.age);

{ Append each record to the end of the rec file. }
class A := a_student;
PUT(class);

until false;

END.

USING THIS EXAMPLE

This program is available online and is named put_example.

4-154 Code

Read, Readln

Read, Readln Read information from the specified file (or from the keyboard) into the specified
variable (s).

FORMAT

read (f, var), ... , var N) ; {read is a procedure.}

and

readln (f, var), ... , var N) ; {readln is a procedure.}

ARGUMENTS

I

var

DESCRIPTION

A variable having a file data type. For read, f can be a text or a file
variable. However, for readln f must be a text variable. F is optional. If
you do not specify I, Domain Pascal reads from standard input (input),
which is usually the keyboard.

One or more variables separated by commas. Var can be any real, inte­
ger, char, Boolean, subrange, or enumerated variable. (Boolean and enu­
merated are extensions to the standard.) Var can also be an array vari­
able or variable-length string (see "Array Operations" earlier in this ency­
clopedia), an element of an array, or a field of a record variable.

Read and readln perform input operations. (Refer to the get listing earlier in this encyclo­
pedia.) You use read or readln to gather one or more pieces of data from f and store
them into var} through varN. Read and readln store the first piece of gathered data into
var}, the second piece into var2, and so on until varN.

If var is an array of char, read and readln attempt to read as many characters as the ar­
ray can hold. If there are not enough characters in the file to fill the array, the remaining
elements of var are padded with spaces. If var is a varying array, read and readln at­
tempt to read the number of characters specified as the maximum length of the string. If
there are fewer characters, no padding occurs. The current length of the string is adjusted
to reflect the number of characters actually read.

Before calling read or readln, you must open the file symbolized by f for reading. Chapter
8 explains how to do that.

There is a subtle, but important, difference between read and readln. After a read, the
stream marker points to the character or component after the last character or component

Code 4-155

Read, Readln

it read from the file. In contrast, after a readln, the stream marker points to the character
or record after the next end-of-line character in the file. In other words, after getting the
data for varN, readln skips over the remainder of the current line in the input file. (Note
that var] through varN may themselves cover several lines of data in the file.) If you call
readln and var is a record variable, the compiler reports an error; however, it is not an
error to call read with the same variable-as long as the record variable is the base type of

f·

If you call read or readln when eor (j) is true, the operating system reports an error.

EXAMPLE

PROGRAM read_example;
{ NOTE: Before running this program, you must obtain file }
{ "annabel_lee" and store it in the same directory as the program. }
{ This program demonstrates READLN by reading from the poem stored in}
{ pathname 'annabel_lee'. }

CONST
pathname

VAR
'annabel_lee';

string;
text;

a_line
poem
title
st
count, n

array[1 .. 60] of char;
integer32;
integer16;

BEGIN

{ Open the file for reading.
open(poem, pathname, 'OLD', st);
if st = 0

then reset(poem)
else begin

writeln('Cannot open
return;

end;
readln(poem, title);
writeln('Which line of' title);

pathname) ;

write('do you want to retrieve? ');

END.

4-156 Code

readln(n) ;
for count := 1 to (n + 1) do

read In (poem, a_line);
writeln(output, a_line);

}

Read, Readln

USING THIS EXAMPLE

Following is a sample run of the program named read_example:

Which line of Annabel Lee
do you want to retrieve? -- 3
That a maiden there lived whom you may know

Code 4-157

Record Operations

Record Operations

In Chapter 3 you learned how to declare record types and variables. This section explains
how to refer to records in the action part of your program.

Referring to Fixed Records

In the action part of your program, you specify a field of a fixed record in the following
way:

For example, consider the following declaration of a fixed record variable:

VAR
student

n
id

end;

record
array[l .. 26] of char;
integer16;

You can assign values to the two fields with the following statements:

student.n
student.id

.- 'Herman Melville';

.- 37;

If the data type of the field is itself a record, you must specify the ultimate field in the
following way:

For example, consider the following record within a record declaration:

TYPE
name = record

first array[l .. lO] of char;
middle array[l .. lO] of char;
last arraY[1 .. 16] of char;

end;
VAR

student record
n name;
id : integer16;

end;

4-158 Code

Record Operations

You can assign values to all four fields with the following statements:

student.n.first := 'Kerry' ;
student.n.middle :== 'Bruce';
student.n.last .- 'Raduns';
student.id .- 134;

Variant Records

In the "Variant Records" section of Chapter 3, the variant records worker and my_code
were declared as follows:

TYPE
worker_groups = (exempt, non_exempt); {enumerated type}
worker = record {record type}

employee: array[l .. 30] of char;
id_number : integer16;

{field in fixed
{field in fixed
{variant part}

VAR

CASE wo : worker_groups OF
exempt : (yearly_salary
non_exempt (hourly_wage

integer32) ;
real);

end;
my_code record

CASE integer OF {variant part}

end;

w worker;
mc my_code;

1 (all array[1 .. 4] of char);
2 (first_half: array[1 .. 2] of char;

second_half: array[1 .. 2] of char);
3 (xl integer16;

x2 : boolean;
x3 : char);

4 (raIl: single);

The following fragment assigns values to w:

write('Enter the person"s name -- '); readln(w.employee);

part}
part}

write('Enter the person"s id number -- '); readln(w.id_number);
write('Enter pay status (exempt or non_exempt) -- '); readln(w.wo);
if W.wo = exempt

then begin
write('Enter yearly salary -- '); readln(w.yearly_salary);

end
else begin

write('Enter hourly wage -- '); readln(w.hourly_wage);
end;

Code 4-159

Record Operations

NOTE: Suppose you execute the preceding fragment and load values into
w.employee, w.id_Dumber, w.wo, and w.hourly_wage. Note
that the compiler won't protect you from mistakenly trying to ac­
cess w.yearly_salary rather than w.hourly_wage.

The following fragment assigns values to mc. (Notice that we do not use the constants 1,
2, 3, and 4 to specify these fields.)

write('Enter two characters -- '); readln(mc.first_half);
write('Enter two more characters -- '); readln(mc.second_half);
writeln('Together, the four characters are " mc.all);

Arrays of Records

A common way to store records is as an array of records. You must use the following
format to specify a field in an array of records:

array_name[componentl.field_name

For example, given the following declaration for school:

TYPE

VAR

student = record
age: 11 .. 20;
class: 7 .. 12;
name: array[1 .. 20] of char;

end;

school: array[1 .. 1000] of student;

you can specify the 500th record as:

school [500] . age := 15;
school [500] .class := 10;
school[500].name := 'John Donne';

4-160 Code

Repeat/Until

Repeat/Until Executes the statements within a loop until a specified condition is satisfied.

FORMAT

repeat
stmnt; .

until cond;

{repeat is a statement.}

ARGUMENTS

stmnt An optional argument. For stmnt, specify a simple statement or a com­
pound statement. (Ordinarily, you must indicate a compound statement
with a begin/end pair; however, the begin/end pair is optional within a
repeat statement.)

cond Any Boolean expression.

DESCRIPTION

Repeat marks the start of a loop; until marks the end of that loop. At run time, Pascal
executes stmnt within that loop until cond is true. As long as cond is false, Pascal contin­
ues to execute the statements within the loop.

The following list describes two methods of jumping out of a repeat loop prematurely (Le.,
before the condition is true):

• Use exit to transfer control to the first statement following the repeat loop.

• Use goto to transfer control outside the loop.

In addition to these measures, you can also execute a next statement to skip the remain­
der of the statements in the loop for one iteration.

EXAMPLE

PROGRAM repeat_example;
{ This program demonstrates two different REPEAT loops. }
{ Compare it to while_example. }
VAR

num
test_completed
i

integer16;
boolean;
integer32;

Code 4-161

RepeatlUntil

BEGIN
write('Enter an integer -- ');
readln(num);

REPEAT
num := num + 10;
writeln(num, sqr(num»;

UNTIL (num> 101);

writeln;
test_completed := false;
REPEAT

write('Enter another integer (or 0 to stop the program) -- ');
readln(i);
if i = 0 then

test_completed := true
else

writeln('The absolute value of' i:1,' is
UNTIL test_completed;

END.

USING THIS EXAMPLE

Following is a sample run of the program named repeat_example:

Enter an integer -- 70
80 6400
90 8100

100 10000
110 12100

Enter another integer
The absolute value of
Enter another integer
The absolute value of
Enter another integer

(or 0 to
4 is 4
(or 0 to
-5 is 5
(or 0 to

stop the program) -- 4

stop the program) -5

stop the program) 0

abs(i):l);

Now, consider a second run of repeat_example. This time, the user enters an integer
greater than 101. In contrast to while_example, the program still executes the loop once:

Enter an integer -- 102
112 12544

Enter another integer (or 0 to stop the program) -- 0

4-162 Code

Replace

Replace Substitutes a new record for an existing record in a file. (Extension)

FORMAT

replace (file _variable) {replace is a procedure.}

ARGUMENT

file_variable A file variable.

DESCRIPTION

Use the replace procedure to replace an element in the file specified by file_variable. You
can use replace only on files with file type; you cannot use it to replace an element in a
text file.

Before calling replace you must do the following:

1. Open the file for reading. (Chapter 8 explains how to do this.)

2. Specify the record that you wish to replace. To do this, you can use the find pro­
cedure (described earlier in this chapter).

3. Store the replacement record by entering a statement of the format

file_variable" := replacement_record;

The replace procedure permits a program to rewrite file components-for example, to cor­
rect errors-while the file is open for read access. The program need not close the file and
reopen it.

NOTE:

EXAMPLE

The term "record", as it applies to a file of file type, refers to an
object of the file's base type. This mayor may not be a Domain
Pascal record type. (For example, the object could be an integer
type.)

For a full example of replace, see the example for the find procedure that appears earlier
in this encyclopedia.

Code 4-163

Reset

Reset Makes an open file available for reading.

FORMAT

reset (filename) {reset is a procedure.}

ARGUMENT

filename A variable having the text or file data type.

DESCRIPTION

Before you can read data from a file other than standard input, you must reset the file. If
the file is a temporary file and does not already exist, reset creates an empty file. If the
file is not a temporary file, it must already exist, and you must have previously opened it
using open. The open procedure tells the system to open a file for some type of I/O op­
eration; reset tells the system to allow you to read from the file, but prevents you from
modifying the file. (See the description of the find procedure for one exception to this
rule.)

Filename must symbolize an open file.

Calling reset sets the stream marker to point to the beginning of the file. Therefore, file­
name" will contain the first character or component of the file. You can change the stream
marker by reading from the file (with read, readln, or get) or by calling the find proce­
dure.

If the file is empty when you call reset, then filename" is totally undefined. That is, there
is no way to predict what the value of filename" will be.

To open the file for write access you must call rewrite instead of reset.

4-164 Code

Reset

EXAMPLE

PROGRAM reset example;
{NOTE: Before-running this program, you must obtain file "annabel_lee" }
{ and store it in the same directory as the program. }
{ Demonstrates reset. After opening a file (with OPEN), the program }
{ reads the first line of the file and writes it to standard output. }

{ We need the two include files in order to use status_$t and }
{ error_$print. }
%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%LIST;

CONST
pathname_of_file

VAR
assignment
openstatus
a_line

BEGIN

'annabel lee" - ,

text;
status_$t;
string;

{Open the file for reading. }
open (assignment , pathname_of_file, 'OLD', openstatus.all);
if openstatus.all = status_$ok

then RESET(assignment)
else begin

error_$print(openstatus); {print any error -}
return;

end;
{See Chapter 9 for a discussion of error handling. }

{Read the first line of the file. }
readln(assignment, a_line);

{Write this line to standard output (usually the transcript pad). }
writeln(output, a_line);

END.

USING THIS EXAMPLE

This program is available online and is named reset_example.

Code 4-165

Return

Return Causes program control to jump back to the calling procedure or function. (Extension)

FORMAT

Return is a statement that takes no arguments and returns no values.

DESCRIPTION

Ordinarily, after Domain Pascal executes the last statement in a routine, it returns control
to the calling routine. However, you can use return to jump back prematurely (Le., before
the last statement) to the calling procedure or function. You can use return anywhere in
the body of a procedure or function.

U sing return in the main procedure causes the program to terminate.

EXAMPLE

PROGRAM return example;
{This program-demonstrates the RETURN statement. }
VAR

Ph : single;

Procedure check_Ph;
BEGIN

END;

if (Ph < 2.0) or (Ph> 14.0) then
begin
writeln('You have entered an invalid result.');
RETURN;
end

else if (Ph <= 4.5) then
writeln('You have entered a valid (but suspicious) result.')

else {Ph> 4.5}
writeln('You have entered a valid result.');

writeln('Thank you for your cooperation.');

BEGIN {main procedure}

END.

4-166 Code

write('Enter the Ph of the test sample -- ');
readln(Ph) ;
check_Ph;

Return

USING THIS EXAMPLE

This program is available online and is named return_example.

Code 4-167

Rewrite

Rewrite Makes an open file available for writing only.

FORMAT

rewrite (filename) {rewrite is a procedure.}

ARGUMENT

filename A variable having the text or file data type.

DESCRIPTION

Before you can write data to a permanent file other than standard output, you must do two
things. First, open the file with the open procedure. Second, call the rewrite procedure.
Open tells the system to open a file for some type of 1/0 operations; rewrite tells the sys­
tem to allow you to modify the open file. Filename must symbolize an open file.

To open a temporary file for writing, you merely have to call the rewrite procedure (that
is, don't call the open procedure).

NOTE: Rewrite clears an existing file of its entire contents. To avoid in­
advertently erasing an important file, you might consider using the
file_history value 'NEW' when you call open.

Rewrite sets the stream marker to the beginning of the file. Each call to write, writeln, or
put advances the stream marker.

After calling rewrite, the file is empty. Therefore, the value of filename" is totally unde­
fined. That is, there is no way to predict what its value will be.

To open the file for read access you must call reset instead of rewrite.

4-168 Code

Rewrite

EXAMPLE

PROGRAM rewrite_example;
{ This program demonstrates rewrite. Opens a file for writing. }
{ The program will prompt you for the name of the file to open. }
{ After opening the file, you can write a sentence to it. }
{ We need the two include files in order to use status_$t and }
{ error_Sprint. }

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%LIST;

VAR
name_of_file
profound
openstatus
a_line

BEGIN

array[l .. 50] of char;
text;
status_$t;
string;

{ Prompt the user for the name of a file to open. }
write('What is the pathname of the file you want to write to -- ');
readln(name_of_file);

{ Open the file for writing. }
open (profound , name_of_file, 'NEW', openstatos.all);
if openstatus.all = status_$ok

then REWRITE(profound)
else begin

error_$print(openstatus); {Print an error message. }
return;

end;
{ Prompt the user. }

writeln('Now enter a line of text.');
read In (a_line) ;

{ Write the line out to the open file. }
writeln(profound, a_line);

END.

USING THIS EXAMPLE

This program is available online and is named rewrite_example.

Code 4-169

Round

Round Converts a real number to the closest integer.

FORMAT

round(n) {round is a function.}

ARGUMENT

n Any real expression.

FUNCTION RETURNS

The round function returns an integer value.

DESCRIPTION

The round function rounds (up or down) n to the closest integer. If the decimal part of n
is equal to or greater than .5, the round function rounds up. (Compare round to trunc.)

EXAMPLE

PROGRAM round_example;
{This program demonstrates the round function}
VAR

x : REAL;
y : INTEGER;

BEGIN
x := 54.2; y
x .- 54.5; y
x := 54.8;
x .- -54.8;

END.

USING THIS EXAMPLE

: = ROUND (x) ; WRITELN('If you
: = ROUND (x) ; WRITELN('If you
: = ROUND (x) ; WRITELN('If you

y : = ROUND (x) ; WRITELN('If you

round , ,x, , you get , ,y) ;
round , ,x, , you get , ,y) ;
round , ,x, , you get , ,y) ;
round , ,x, , you get , ,y) ;

If you execute the sample program named round_example, you get the following output:

If you round 5.420000E+Ol you get 54
If you round 5.450000E+Ol you get 55
If you round 5.480000E+Ol you get 55
If you round -5.480000E+Ol you get -55

4-170 Code

Rshft

Rshft Shifts the bits in an integer a specified number of spaces to the right. (Extension)

FORMAT

rshft(num, sh) {rshft is a function.}

ARGUMENTS

num, sh Integer expressions.

FUNCTION RETURNS

The rshft function returns an integer value.

DESCRIPTION

The rshft function shifts the bits in num to the right sh places. The expr~ssion num can be
any integer expression smaller than 32 bits. Rshft does not wrap bits around from the
right edge to the left; instead, rshft shifts zeros in from the left end.

Rshft does not preserve the sign bit. The sign bit moves to the right just like every other
bit. This means that if Dum is negative and is a 32-bit integer, the result of an rshft is
always positive. Of course, if Dum already is positive, the result of an rshft will still be
positive.

Say, for example, num is a 16-bit signed integer and the result of the function is to be
stored in a 16-bit integer variable. In this case, rshft expands num to a 32-bit integer,
performs the shift, and converts it back to a 16-bit integer. Note that, because of the ex­
pansion and contraction, rshft always returns a negative number when num is a 16-bit
negative expression and sh is less than or equal to 16.

Consider this example. Suppose num is 16 bits and equals -9. You perform an rshft with
sh equaling 3 and put the result back in a 16-bit integer. Here's what happens at each
step:

Before the rshft
Convert to 32-bit integer
Rshft 3 bits
Convert to 16-bit integer

1111111111110111
11111111111111111111111111110111
00011111111111111111111111111110

1111111111111110

-9

-2

Code 4-171

Rshft

If you print the rshft result before it is converted back to 16 bits, you get the number rep­
resented in the third step above which, of course, is a different number than the final re­
sult. Write your code like this to get that 32-bit result

writeln(rshft(num,3»;

instead of like this

answer := rshft(num,3);
writeln(answer);

{Assume answer is a 16-bit integer.}

Results are unpredictable if sh is negative.

Compare rshft to Ishft and arshft.

EXAMPLE

See the example shown in the arshft listing earlier in this encyclopedia.

4-172 Code

Set Operations

Set Operations

In Chapter 3 we described how to declare set variables. This section explains how to use
set variables in the code portion of your program.

ASSIGNMENT

To assign value(s} to a set variable, use one of the following formats:

set_variable := [];
set_variable := [el, el, ... el];
set_variable := [el .. ell;
set_variable := set_expression set_operator set_expression;

The brackets are mandatory. El must be an expression with a value having the same data
type as the base type of the set variable.

(The set_operators are detailed later in this listing.)

The following program fragment shows seven possible set assignments for the paint set:

TYPE
colors (white, beige, black, red, blue, yellow, green);

VAR
c : colors; {enumerated variable}
paintl, paint2, paint3, paint4, paintS, paint6, paint7 SET OF col-

ors;

BEGIN
c := blue;
paintl .- [] ; {Null set.}
paint2 .- [rojo] ; {Illegal assignment.}
paint3 '- [red] ; .-
paint4 .- [beige, green, black];
paint5 .- [white green] ; {All seven elements.}
paint6 .- [beige .. blue] ; {beige, black, red, and blue.}
paint7 .- [c] ; {blue.}

Code 4-173

Set Operations

SET OPERATORS

Union

Table 4-13 shows the eight set operators Domain Pascal supports. The following subsec­
tions describe these operators individually.

Table 4-13. Set Operators

Set Operator Operation

+ Union of two sets
• Intersection of two sets
- Set exclusion
= Set equality
<> Set inequality
<= Subset
>= Superset
in Inclusion

The union of two sets is a set containing all members of both sets. In the following exam­
ple, paint3 contains the union of sets paintl and paint2:

TYPE
colors (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paint!, paint2, paint3 SET OF colors .- [];

BEGIN
paint! .- [white, black, red];
paint2 .- [black, yellow];
paint3 .- paint! + paint2;

{paint3 will contain white, black, red, and yellow.}

If there are duplicates (for example, black), the resulting set does not store the duplicate
value twice. Thus, paint3 contains black only once.

4-174 Code

Set Operations

Intersection

The intersection of two sets is a set containing only the duplicate elements. In the following
example, paint3 contains the intersection of sets paintl and paint2:

TYPE
colors (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paintl, paint2, paint3 SET OF colors := [];

BEGIN
paintl .- [white, black, red];
paint2 .- [black, yellow];
paint3 .- paintl * paint2;

{paint3 will contain black.}

Set Exclusion

Pascal finds the result of a set exclusion operation by starting with all the elements in the
left operand and crossing out any of the elements that are duplicated in the right operand.
The following program fragment demonstrates two set exclusion operations:

TYPE
colors (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paintl, paint2, paint3 SET OF colors .- [];

BEGIN
paintl .- [white, black, red];
paint2 .- [black, yellow];

paint3 .- paintl - paint2;
{paint3 will contain white and red.}

paint3 := paint2 - paintl;
{paint3 will contain yellow.}

Code 4-175

Set Operations

Set Equality and Inequality

Subset

Superset

The result of a set equality (=) or inequality (<» operation is a Boolean value. If two set
variables contain exactly the same elements (or are both null sets), then = is true and <> is
false. The following program fragment demonstrates set equality:

TYPE

VAR

colors (white, beige, black, red, blue, yellow, green);

c : colors;
paintl, paint2 SET OF colors .- [];

BEGIN
paintl := [white, black, red];
paint2 .- [black, yellow];
if paintl = paint2

then writeln('The two sets contain the same elements.');
else writeln('The two sets do not contain the same elements.');

The result of a subset operation «=) is a Boolean value. If the first operand is a subset of
the second operand, then the result is true; otherwise, the result is false.

TYPE

VAR

colors (white, beige, black, red, blue, yellow, green);

c : colors;
paintl, paint2 SET OF colors .- [];

BEGIN
paintl .- [white, black, red];
paint2 := [white, red];
if paint2 <= paintl {this is true}

then writeln ('Paint2 is a subset of paintl');

The result of a superset operation (>=) is a Boolean value. If the first operand is a super­
set of the second operand, then the result is true; otherwise, the result is false.

4-176 Code

Inclusion

Set Operations

TYPE
colors = (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paintl, paint2 : SET OF colors := [];

BEGIN
paintl := [white, black, red];
paint2 := [white, red];
if paintl >= paint2 {this is true.}

then writeln('Paintl is a superset of paint2.');

See the separate in listing earlier in this encyclopedia.

EXAMPLE

PROGRAM set_example;
{This program demonstrates I/O with set variables. You cannot }
{use a set variable as an argument to any of the predeclared }
{Pascal I/O procedures, so you must use a somewhat roundabout }
{method involving the base type of the set. }

TYPE
possible_ingredients

(sugar, nuts, chips, milk, flour, carob, salt, bkg_soda);
VAR

pi
cookies

possible_ingredients;
set of possible_ingredients .- [];

answer char;
BEGIN
{Read the proper cookie ingredients and store }
{them in the cookies variable. }

for pi := sugar to bkg_soda do
begin
write('Should the recipe contain' pi:4, '1 (y or n) -- ');
readln(answer);
if (answer = 'y') or (answer = 'Y') then

cookies := cookies + [pi];
end; {for}

{Write the list of ingredients. }

END.

writeln(chr(lO), 'The ingredients are: ');
for pi := sugar to bkg_soda do

if pi IN cookies then
writeln(pi);

Code 4-177

Set Operations

USING THIS EXAMPLE

Following is a sample run of the program named set_example:

Should the recipe contain SUGAR? (y or n) -- y
Should the recipe contain NUTS? (y or n) -- y
Should the recipe contain CHIPS? (y or n) -- y
Should the recipe contain MILK? (y or n) - n
Should the recipe contain FLOUR? (y or n) -- y
Should the recipe contain CAROB? (y or n) -- n
Should the recipe contain SALT? (y or n) -- y
Should the recipe contain BKG SODA? (y or n) -- y

The ingredients are:
SUGAR

NUTS
CHIPS
FLOUR

SALT
BKG_SODA

4-178 Code

Sin

Sin Calculates the sine of the specified number.

FORMAT

sin (number) {sin is a function.}

ARGUMENT

number Any real or integer expression.

FUNCTION RETURNS

The sin function returns a real value (even if number is an integer).

DESCRIPTION

The sin function calculates the sine of a number. This function assumes that the argument
(number) is a radian measure (as opposed to a degree measure). (Refer also to the cos
listing earlier in this encyclopedia.)

Code 4-179

Sin

EXAMPLE

PROGRAM sin_example;
{This program demonstrates the SIN function.}

CONST
pi = 3.1415926535;

VAR
angle_in_radians, c1, converted_to_radians, c2, angle_in_degrees: REAL;

BEGIN
write('Enter an angle in radians -- ');
readln(angle_in_radians);
c1 := SIN(angle_in_radians);
writeln('The sine of " angle_in_radians:5:3, ' radians is " c1:5:3);

{The following statements show how to convert from degrees to radians.}
write('Enter another angle (in degrees) -- ');
readln(angle_in_degrees);
converted_to_radians := «angle_in_degrees * pi) / 180.0);
c2 := SIN(COnverted_to_radians);
writeln('The sine of " angle_in_degrees:5:3, ' is " c2:5:3);

END.

USING THIS EXAMPLE

Following is a sample run of the program named siD_example:

Enter an angle in radians -- 1.0
The sine of 1.000 radians is 0.841
Enter another angle (in degrees) 14.2
The sine of 14.200 is 0.245

4-180 Code

Sizeof

Sizeof Returns the size (in bytes) of the specified data object. (Extension)

FORMAT

The sizeof function has two formats:

sizeof(x) {first form}

sizeof(x, tag], ... tagN) {second form}

ARGUMENTS

x

tag

FUNCTION RETURNS

The name of a type (standard or user-defined), a variable, a constant, or
a string.

One or more constants corresponding to the fields in a variant record.
You specify these tags only if you want to find the size of a variant re­
cord. The number of tags can be no greater than the number of tag
fields in the variant record.

The function returns an integer value.

DESCRIPTION

Sizeof returns an integer equal to the number of bytes that the program uses to store x. If
the argument to sizeof is a variable-length string, sizeof returns the size of the entire re­
cord, including the current length field and any padding bytes.

You must often supply a string and its length as input arguments when calling a procedure
or function. You can use sizeof to calculate the string's length, although the way you call
sizeof affects the answer you get. For example, if your code includes the following:

VAR
length
animal

integer;
string;

animal .- 'wildebeest';
length .- SIZEOF(animal);

Code 4-181

Sizeof

•

sizeof returns 80 because animal is declared to be a string, and string is defined as be­
ing an array of 80 chars. However, if you call the function this way:

length := SIZEOF('wildebeest');

sizeof returns a value of 10.

To find the size of a specified variant record, you must pass both the name of the variant
record type (or variable), and tag fields. For example, consider the following record decla­
ration:

TYPE
worker_stat = (exempt, nonexempt);
worker = record

name: array[1 .. 24] of char;
case worker_stat of

exempt (salary integer16);
nonexempt

end;
end;

(wages
plant

single;
array[l .. 20] of char);

To find the size of a record if worker_stat equals exempt, call sizeof as follows:

SIZEOF(worker, exempt)

To find the size of a record if worker_stat equals nonexempt, call size of as follows:

• SIZEOF(worker, nonexempt)

4-182 Code

EXAMPLE

PROGRAM sizeof_example;
{ This program demonstrates the SIZEOF function. }

CONST
tree

TYPE
'ficus';

student = RECORD
name array[1 .. 19] of char;
age integer16;
id integer32;

end;
VAR

t2 integer16;

BEGIN

writeln('The size of constant tree is " SIZEOF(tree):l);
writeln('The size of variable t2 is " SIZEOF(t2):1);

Sizeof

writeln('The size of an integer32 variable is " SIZEOF(integer32):1);
writeln('The size of a student record is " SIZEOF(student):l);

END.

USING THIS EXAMPLE

If you execute the sample program named sizeof_example, you get the following output:

The
The
The
The

size
size
size
size

of
of
of
of

constant tree is 5
variable t2 is 2
an integer32 variable is 4
the student record type is 26

Code 4-183

Sqr

Sqr Calculates the square of a specified number.

FORMAT

sqr(n) {sqr is a function.}

ARGUMENT

n Any integer or real expression.

FUNCTION RETURNS

The $qr function returns an integer if n is an integer, and returns a real number if n is
real.

DESCRIPTION

The sqr function calculates n • n. A potential problem for users is that the square of a
large integer16 value often exceeds the maximum value (32,767) for integer16 variables.
If this error is possible in your program, assign the square of an integer16 variable to an
integer32 variable.

EXAMPLE

PROGRAM sqr_example;
{ThiS program demonstrates the use of the sqr function}

VAR
i_short
i_long
rl, r2

: integer16;
: integer32;

: real;

BEGIN
write('Enter an integer -- '); readln(i_short);
i_long := SQR(i_short);
writeln('The square of " i_short:l, ' is " i_long:l);

write('Enter a real number -- '); readln(rl);
r2 := SQR(rl);
writeln('The square of " rl:l, ' is " r2:1);

END.

4-184 Code

USING THIS EXAMPLE

Following is a sample run of the program named sqr_example:

Enter an integer -- 1100
The square of 1100 is 1210000
Enter a real number -- -5.23
The square of -5.230000E+00 is 2.735290E+01

Sqr

Code 4-185

Sqrt

Sqrt Calculates the square root of a specified number.

FORMAT

sqrt(n) {sqrt is a function.}

ARGUMENT

n Any integer or real expression that evaluates to a number greater than
zero.

FUNCTION RETURNS

The sqrt function returns a real value (even if n is an integer).

DESCRIPTION

The sqrt function calculates the square root of n.

EXAMPLE

PROGRAM sqrt_example;
{This program demonstrates the use of the sqrt function}

VAR
i_long
r_single
r_double

integer32;
single;
double;

BEGIN
write('Enter an integer -- '); readln(i_long);
r_double := SQRT(i_long);
writeln('The square root of " i_long: 1, ' is " r_double);

write('Enter a real number -- '); readln(r_single);
r_double := SQRT(r_single);
writeln('The square root of' r_single, ' is' r_double);

END.

4-186 Code

Sqrt

USING THIS EXAMPLE

Following is a sample run of the program named sqrt_example:

Enter an integer -- 24
The square root of 24 is 4. 898979663848877E+OO
Enter a real number 24.0
The square root of 2.400000E+Ol is 4. 898979663848877E+OO

Code 4-187

Statements

Statements

Statement

Throughout this encyclopedia, we refer to statements, both simple and compound. Here,
we define statement.

When a format requires a statement, you must enter one of the following:

• An assignment statement like x := 5 or x := y + z. An assignment statement can
also be a call to a function like x := ORD('a').

• A procedure call like writeln('hi').

• A goto, if/then, if/then/else, case, for, repeat, while, with, exit, next, or re­
turn statement.

• A compound statement.

• An empty statement. An empty statement causes no action except an advance to
the next statement. It can be represented by two consecutive semicolons (;;).

Simple and Compound Statements

When the format part of a listing in this chapter says that a command requires a simple
statement, it just means that we require one statement (see above). A compound statement
is a group of zero or more statements bracketed by the keywords begin and end. In other
words, a compound statement has the following format:

begin
statement 1 ;

statementN
end;

The action part of a routine is itself a compound statement. A statement can be preceded
by a label (but not every label is accessible; see the goto listing earlier in this chapter).

4-188 Code

Substr

Substr Extracts a substring from a string. (Extension)

FORMAT

substr(src_string, start, length): {su bstr is a function.}

ARGUMENTS

start

length

FUNCTION RETURNS

A variable-length string, character array, or character-string constant.

The position of the first character in the desired substring of src _string.

The number of characters in the desired substring (length is a positive
integer).

The substr function returns a variable-length string.

DESCRIPTION

The substr function returns a substring of the source string. The start parameter indicates
the position of the first character of the desired substring. The length parameter indicates
the number of characters to return.

If the values of either start or length specify a character position outside of the bounds of
the run-time size of the source string, an error trap occurs.

Code 4-189

Substr

EXAMPLE

PROGRAM substr example;
{This program demonstrates the use of the substr function.}
{It displays a substring of a given string. }

VAR
strl array[1 .. 30] of char;
str2 varying [30] of char;
str3 varying [30] of char;

BEGIN

END.

strl .- 'Foolish consistency is ';
str2 .- 'the hobgoblin of ';
str3 := substr('little minds', 8, 5);

writeln(substr(strl, 1, 8»;
writeln(substr(str2, 5, 10»;
writeln(str3);

USING THIS EXAMPLE

Executing this program, named substr_example, produces the following output:

Foolish
hobgoblin
minds

4-190 Code

Succ

Succ Returns the successor of a specified ordinal value.

FORMAT

succ(x) {succ is a function.}

ARGUMENT

x Must be an integer, Boolean, char, or enumerated expression.

FUNCTION RETURNS

The succ function returns a value having the same data type as x.

DESCRIPTION

The succ function returns the successor of x according to the following rules:

Data Type of x Succ Returns

Integer The numerical value equal to x + 1.

Boolean True-even if x already equals true.

Char The character with the ISO Latin-l
value one greater than the ISO
Latin-l value of x.

Enumerated The identifier to the right of x in
the type declaration.

succ(lastof(x» generally is undefined; however, Domain Pascal does not report an error.
Domain Pascal also doesn't report an error if you specify an integer value that is outside
the range of the specified integer type. Therefore, your program should test for an out-of­
bounds condition.

Compare the succ function to the pred function.

Code 4-191

Succ

EXAMPLE

PROGRAM succ_example;
{This program demonstrates the use of the succ function}

TYPE
jours (lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche);

VAR
int : integer;
ch : char;
semaine : jours;

BEGIN
int := succ(53); writeln('The successor to 53 is " int:l);
ch := succ('q'); writeln('The successor to q is " ch);
semaine := succ(jeudi);
writeln('The successor to jeudi is " semaine:8);

END.

USING THIS EXAMPLE

If you execute the sample program named succ_example, you get the following output:

The successor to 53 is 54
The successor to q is r
The successor to jeudi is VENDREDI

4-192 Code

Then

Then Refer to if earlier in this encyclopedia.

Code 4-193

To

To Refer to for earlier in this encyclopedia.

4-194 Code

Trune

Trune Truncates a real number to an integer.

FORMAT

trune(n) {trune is a function.}

ARGUMENT

n Any real value.

FUNCTION RETURNS

The trune function returns an integer.

DESCRIPTION

The trune function removes the fractional part of n to create an integer. (Compare trune
to round.)

EXAMPLE

PROGRAM trunc example;
{ This progra; demonstrates the use of the trunc function. }
{ Compare to round function. }
VAR

x : REAL;
y : INTEGER;

BEGIN
x .- 54.2; y
x 54.5; Y
x .- 54.8; Y
x :=-54.8; Y

END.

.- TRUNC(x) ;

.- TRUNC(x) ;

.- TRUNC (x) ;

.- TRUNC(x) ;

WRITELN('If you truncate , ,x, , you
WRITELN('If you truncate , ,x, , you
WRITELN('If you truncate , ,x, , you
WRITELN('If you truncate , ,x, , you

get ' ,Y) ;
get ' ,Y) ;
get ,

,Y) ;
get ' ,Y)

Code 4-195

Trone

USING THIS EXAMPLE

If you execute the sample program named trune_example, you get the following output:

54
54
54
-54

Compare these results to the results of executing program round_example.

4-196 Code

Type Transfer Functions

Type Transfer Functions Permit you to change the data type of a variable or expression in
the code portion of your program. (Extension)

FORMAT

transfer Junction (x) {Type transfer functions are functions.}

ARGUMENTS

transfer Junction

x

DESCRIPTION

The name of any predeclared Domain Pascal data type or any user­
defined data type that has been declared in the program.

An expression.

Domain Pascal type transfer functions enable you to change the type of a variable or ex­
pression within a statement. To perform a type transfer function, use any user-created or
standard type name as if it were a function name in order to "map" the value of its argu­
ment into that type.

With one exception, the size of the argument must be the same as the size of the destina­
tion type. (Chapter 3 describes the sizes of each data type.) This size equality is required
because the type transfer function does not change any bits in the argument. Domain Pas­
cal just "sees" the argument as a value of the new type. The one exception is that integer
subranges are always compatible regardless of their sizes.

It is important to remember that type transfer functions do not convert any value. Consider
the following data type declarations:

VAR
i INTEGER32;
r REAL;

The following assignment converts the value of variable i to a floating-point number:

r := i;

Code 4-197

Type Transfer Functions

However, in the following assignment, Domain Pascal "sees" the bits in i as if they were
actually representing a floating-point number. In this case, there is a transfer, but no con­
version:

r := real(i);

Note that there are restrictions on the data types to which you can convert a given Domain
Pascal data type. For example, you get an error if you try the following:

i := r;

In such a case, there's no way for Domain Pascal to know what you want to do with the
portion of r after the decimal point. Use the trunc or round functions (described earlier in
this encyclopedia) instead.

A practical application of type transfer functions is in controlling the bit precision of a
computation. For example, consider the following program fragment:

VAR
x, y integer16;

BEGIN
if x + y > 5

then .

By default, the compiler expands operands x and y to 32-bit integers and performs 32-bit
addition before making the comparison to 5. However, by using the following type transfer
function, we can produce more efficient code:

VAR
x, y integer16;

BEGIN
if INTEGER16(x + y) > 5

then ...

The disadvantage to using the type transfer function in the preceding fragment is that it
ignores the possibility of integer overflow.

4-198 Code

Type Transfer Functions

EXAMPLE

PROGRAM type_transfer_functions_example;
{ This program demonstrates two uses of type transfer functions. }
TYPE

car_manufacturers
pointer_to_word
word

(ford, chevy, nissan, dodge, caddy, honda);
"'word;
array[l .. 10] of char;

VAR
ordinal_value_of_car : integer16;
car, actual_value_of_car : car_manufacturers;
name, rename word:= [* of ' '];
namepointer : pointer_to_word;

BEGIN
car := dodge;
ordinal_value_of_car := ord(car);
actual value of car := CAR MANUFACTURERS(ordinal value of car);

-{ The-ab~ve stateme~t transfers an intege; value into}
{ an enumerated value. }

write('The actual value of ordinal value ');
writeln(ordinal_value_of_car:1,' is', actual_value_of_car:7);

{ It is illegal to perform mathematical operations on a pointer }
{ variable. However, by using type transfer functions you can }
{ temporarily make a pointer variable into an integer variable so }
{ that you can perform mathematical operations on it. Then, after }
{ using the integer in a math calculation, you can transfer the }
{ integer back to a pointer type by using a second type transfer }
{function. This routine prints the final eight characters in the }
{ specified name. }

write('Enter a name that is 10 characters long -- ');
readln(name);
namepointer := addr(name); {get starting address of name array}
namepointer := UNIV_PTR(INTEGER32(namepointer) + 2);
rename := namepointer"';
writeln('The last eight characters of the name are rename: 8);

END.

USING THIS EXAMPLE

If you execute the sample program named ttf_example, you get the following output:

The actual value of ordinal value 3 is DODGE
Enter a name that is 10 characters long -- CALIFORNIA
The last eight characters of the name are LIFORNIA

Code 4-199

Unpack

Unpack Copies a packed array to an unpacked array.

FORMAT

unpack (packed_array, unpacked_array, index) {unpack is a procedure.}

ARGUMENTS

unpacked_array An array that has been defined without the keyword packed.

index

DESCRIPTION

An array that has been defined using the keyword packed.

A variable that is the same type as the array bounds (integer, boolean,
char, or enumerated) of unpacked_array. Index designates the array ele­
ment in unpacked_array to which unpack should begin copying.

Unpack copies the elements in a packed array to an unpacked one. Data access with un ..
packed arrays generally is faster since data elements are always aligned on word bounda­
ries.

Unpacked_array and packed_array must be of the same type, and for every element in
packed_array, there must be an element in unpacked_array. That is, if you have the fol­
lowing type definitions

TYPE
x array[i .. j] of single;
y packed array[m .. n] of single;

the subscripts must meet these requirements:

j - index >= n - m {"index" as set in the call to unpack}

For example, it is legal to use unpack on two arrays defined like this:

TYPE
big_array
small_array

VAR

array[l .. 100] of integer;
packed array[l .. 10] of integer;

grande
petite

big_array;
small_array;

4-200 Code

Unpack

You use index to indicate the array element in unpacked_array to which unpack should
begin copying. For instance, given the previous variable declarations and assuming variable
i is an integer, this fragment

i := 1;
unpack(petite, grande, i);

tells unpack to begin copying into grande [1] . Unpack keeps copying until it has exhausted
all of petite's elements - in this case 10. Unpack always copies all of its packed_array's
elements, regardless of how many elements are defined for unpacked_array.

Index can take a value outside of packed_array's defined subscripts. That is, if in the ex­
ample above, i equals 50, unpack copies these values this way:

grande [50] := petite[l];
grande[51]:= petite[2];

grande [59] := petite[10];

See the listing for pack earlier in this encyclopedia.

EXAMPLE

PROGRAM unpack_example;
{This program demonstratest the use of the unpack procedure}

TYPE

VAR

uarray
parray

array[l .. 50] of integer16;
packed array[1 .. 10] of integer16;

full_range
sub_range
i, j

uarray;
parray;
integer16;

BEGIN
for i := 1 to 10 do

sub_range[i] .- i;
j := 30;

UNPACK(sub_range, full_range, j);
writeln ('The unpacked array now contains: ');
for i := 30 to 39 do

writeln ('full_range[', i:2, '] =' full_range[i] :2);

END.

Code 4-201

Unpack

USING THIS EXAMPLE

If you execute the sample program named unpack_example, you get the following output:

The unpacked array now contains:
full_range [30] 1
full_range [31] 2
full_range [32] 3
full_range [33] 4
full_range [34] 5
full_range [35] 6
full_range [36] 7
full_range [37] 8
full_range [38] 9
full_range [39] 10

4-202 Code

Until

Until Refer to Repeat earlier in this encyclopedia.

Code 4-203

Variable-Length String Operations

Variable-Length String Operations

This section describes how to use variable-length strings in the code portion of your pro­
gram. See Chapter 3 for information about declaring variable-length strings.

USING VARIABLE-LENGTH STRINGS

You may assign a character constant, string constant, or character array to a variable­
length string. You make assignments to variable-length strings in the same manner that you
make assignments to arrays of char. For example:

VAR
var_string
ar_of_char

varying [20] of char;
array[1 .. 20] of char;

BEGIN
var_string .- 'test';
ar_of_char .- 'test';

When you assign to a variable-length string, however, the unassigned elements of the array
are not padded with spaces as they are for arrays of char. Unassigned elements maintain
their old values. When you output a variable-length string with write or writeln, the pro­
cedure writes only the characters included in the string's current length. The following
example illustrates this essential difference between variable-length and fixed-length arrays:

VAR
var string : VARYING [100] of CHAR;
fixed_string: PACKED ARRAY[1 ... 100] of CHAR;

BEGIN

END.

4-204 Code

fixed_string .- 'string';
{length is always 100 - unassigned }
{ chars are padded with spaces }

var_string := 'string'; {current length 6 }.
writeln(var_string); { outputs only six characters}
writeln(fixed_string); {outputs 100 characters }
var_string .- 'longer string'; {current length is 13 }

Variable-Length String Operations

Trailing Null Character

The Pascal compiler appends a null character to a variable-length string under the follow­
ing conditions:

• A string constant is assigned to a variable-length string.

• A character constant is assigned to a variable-length string.

• An array is assigned to a variable-length string.

• A string is assigned to a variable-length string via a read call.

The trailing null byte facilitates communication with routines written in other languages,
such as C, that expect strings to end with a terminating null character. Note, however,
that the current length of the string does not include the terminating null character, so the
null character is invisible to Pascal routines that do not access the body field directly. For
example:

PROGRAM null_char;

VAR
VARYING [80] of CHAR;

BEGIN
var_string := 'string';

{ null char is appended, but current length is 6 }
writeln(var_string); { Does not output null char}
writeln(var_string.body[7]); { Outputs null character}

END.

Note that you can inadvertently overwrite the null character by accessing the length or
body fields directly:

var_string := 'string';
var_string.length := 3; {terminating character is 'i', not null}
var_string.body := 'longer string'; {null character is overwritten

and body is padded with spaces}

For routines that communicate with C functions, you should be careful about directly
changing length and body fields. To be on the safe side you should use the ptoc function,
which explicitly appends a null character to a variable-length string. (See the description
of ptoc in Chapter 4 for an example of passing a variable-length string to a C function.)

Code 4-205

Variable-Length String Operations

ASSIGNING TO AND FROM VARIABLE-LENGTH STRINGS

When you make an assignment to a variable-length string, the compiler automatically pro­
motes the assigned object to a variable-length string. Promotion of string constants occurs
at compile time so it does not affect execution speed. Promotion of characters to
variable-length strings occurs at run time, but is relatively efficient. Promotion of character
arrays to variable-length strings, however, can have a noticeable impact on execution
speed. If execution speed is a serious concern, therefore, you should avoid situations in
which character arrays must be promoted to variable-length strings.

The compiler never demotes variable-length strings to character arrays. To treat a varia­
ble-length string as a normal array of characters you should reference its body field.

The following sections contain more detailed information about legal assignments involving
variable-length strings.

varying : = varying

Only those characters included in the current length of the source string (plus the trailing
null character) are copied to the destination string. Note that the compiler does not check
to see whether the trailing byte is in fact a null character. It simply copies a string equal
to one greater than the current length. The length of the destination string is set equal to
the current length of the source string (the trailing null character is not included in the
length).

If the compiler option -subchk is off (default), the compiler copies the source string to the
destination array without checking bounds. If -subchk is on, a run-time check verifies
that the current length of the source string is not larger than the maximum length of the
destination variable. If the string is too large, a run-time error occurs.

varying : = array of char

The compiler promotes the character array to a variable-length string and assigns it to the
destination string variable. It then appends a null character to the destination string. The
length of the reSUlting string is the number of elements in the source character array (Le.,
the length does not include the null character). A compile-time error occurs if the char­
acter array is larger than the maximum size of the destination string.

4-206 Code

Variable-Length String Operations

varying : = char

The compiler assigns the character to the body field of the variable-length string and sets
the length field equal to 1. A trailing null character is also assigned to the destination.

Pointer Assignment

Pointers to variable-length strings obey standard Pascal type compatibility rules - two
pointers are compatible only if they share the same type name.

Passing Variable-Length Parameters

The type compatibility rules for variable-length strings that are procedure/function parame­
ters are very similar to the rules for normal assignment. Characters, character arrays,
character-string constants, and variable-length strings may be passed to varying parameters
that are passed by value or as in parameters. The rules for compatibility are the same as
if the argument were being assigned to a variable of the parameter's type. Arguments
passed to variable-length string parameters by reference (var, out or in out) must be
variable-length strings with exactly the same maximum size as the parameter.

Comparing Variable-Length Strings

You can compare two variable-length strings for equality, inequality, and lexicographic or­
der. The lengths of strings being compared depend solely on the strings' current length
values. The lengths are independent of the strings' maximum sizes, as declared at compile
time.

If two strings being compared have different lengths, the comparison is performed as if the
shorter string were padded with spaces to make its length equal to the longer string.

Code 4-207

While

While Executes the statements within a loop as long as the specified condition is true.

FORMAT

while condition do
stmnt;

{while is a statement.}

ARGUMENTS

condition

stmnt

DESCRIPTION

Any Boolean expression.

A simple statement or a compound statement. (Refer to "Statements"
earlier in this encyclopedia.)

For, repeat, and while are the three looping statements of Pascal. With while, you specify
the condition under which Pascal continues looping.

While marks the beginning of a loop. As long as condition evaluates to true, Pascal exe­
cutes stmnt. When condition becomes false, Pascal transfers control to the first statement
following the loop.

To jump out of a while loop prematurely (Le., before the condition is true), do one of the
following things:

• Use exit to transfer control to the first statement following the while loop.

• Use goto to transfer control outside the loop.

In addition to these measures, you can also call the next statement to skip the remainder
of the statements in the loop for one iteration.

4-208 Code

While

EXAMPLE

PROGRAM while example;
{ This program contains two while loops. }
{ Compare it to repeat_example. }
VAR

num
test_completed
i

integer16;
boolean;
integer32;

BEGIN

END.

write('Enter an integer -- '); readln(num);
WHILE (num < 101) DO

BEGIN
num := num + 10;
writeln(num, sqr(num»;
END;

writeln;
test_completed := false;
WHILE test_completed = false DO

BEGIN
write('Enter an integer (enter a 0 to stop the program) -- ');
readln(i) ;
if i = 0 then

test_completed := true
else

writeln('The absolute value of' i:1,' is
END;

abs(i):1);

Code 4-209

While

USING THIS EXAMPLE

Following is a sample run of the program named while_example:

Enter an integer -- 70
80 6400
90 8100

100 10000
110 12100

Enter an integer (enter a 0 to stop the program) 4
The absolute value of 4 is 4
Enter an integer (enter a 0 to stop the program) -5
The absolute value of -5 is 5
Enter an integer (enter a 0 to stop the program) 0

Now, consider a second run of while_example. In contrast to repeat_example, while_ex­
ample does not execute the loop even once when x > 101.

Enter an integer -- 102

Enter an integer (enter a 0 to stop the program) -- 0

4-210 Code

With

With Lets you abbreviate the name of a record.

FORMAT

With is a statement that takes the following format:

with vl, v2, ... vN do
stmnt;

This format is equivalent to:

with vl do
with v2 do

with vN do
stmnt;

ARGUMENTS

vl

v2, ... vN

stmnt

DESCRIPTION

A record expression; that is, v 1. must evaluate to a record. For example,
it might be the name of a record, a pointer to a record, or a particular
component in an array of records.

Optional record references or references that are qualified by v 1,
v(N-l).

A simple or compound statement. (Refer to the "Statements" listing ear­
lier in this chapter.)

Use with to abbreviate a reference to a field in a record. With works in the following
manner. Suppose that X is a field within record MATHVALUES. Ordinarily, you must
specify the full name MATHV AL UES. X whenever you want to refer to the contents of
field X. However, by using the statement

WITH MATHVALUES

Code 4-211

With

you can simply specify X to refer to the contents of the field. Moreover, suppose that re­
cord MATHVALUES contains a field called TRIGONOMETRY which itself contains a
field named Y. By specifying

WITH MATHVALUES, TRIGONOMETRY

you can refer to Y as Y rather than as MATHVALUES.TRIGONOMETRY.Y. Note that
Domain Pascal evaluates the expression vI only once, and this evaluated expression is im­
plied within the body of the with statement.

Now consider a fragment demonstrating with:

TYPE

P = "basketball_team;
VAR

bb = basketball_team;
BEGIN

WITH p" DO
BEGIN

mascot
p

.- 'tiger';

.- nil;

END;

.- 198.2; height
bb.mascot .- 'lion';

Note two things about the preceding example. First, changing p does not affect access to
the record identified by the with statement. Second, you can reference other records of
the same type by completely qualifying the reference.

Extension to Standard Pascal

Domain Pascal supports the standard format of with and also supports the following alter­
native format:

with vl:identifierl, v2:identifier2, ... vN:identifierN do
stmnt;

This is very similar to the standard format for with. In this extension, the identifier is a
pseudonym for the record reference v. To specify a record, use the identifier instead of
the record reference v. Furthermore, to specify a field in a record, use identi­
fier.field_name rather than merely field_ name.

4-212 Code

For example, given the following record declaration:

VAR
basketball_team : record

mascot
height

end;

array[1 .. 15] of char;
: single;

consider the following three methods of assigning values:

readln(basketball_team.mascot);
readln(basketball_team.height);

WITH basketball_team DO
begin

end;

readln(mascot);
readln(height);

WITH basketball_team : B DO
begin

end;

readln(B.mascot);
readln(B.height);

{Not using WITH.}
{Not using WITH.}

{Using standard WITH.}

{Using extended WITH.}

With

This feature is useful for working with long record names when two records contain fields
that have the same names. (See the example at the end of this listing.)

EXAMPLE

PROGRAM with_example;

{ This program demonstrates the WITH statement. }

TYPE

VAR

name = record
first: array[l .. 10] of char;
last: array[l .. 14] of char;

end;
documentation_department = record

their_name name;
current_project : string;

end;

documentation_department;

Code 4-213

With

BEGIN

writeln('In this routine, you enter data about Apollo documentors.');

{ First, we demonstrate the standard use of WITH. }
WITH our_technical_writers, their_name DO
BEGIN

write('Enter the first name of the writer -- ');
readln(first);

write('Enter the last name of the writer -- ');
readln(last);

write('Enter a brief description of his or her current project--');
readln(current_project);

END; {with}

writeln;
{ Next,we demonstrate the Domain Pascal extensions to WITH. }
{ Use of the identifiers Wand E permits a distinction between}
{ the records inside the scope of the WITH statement. }

END.

WITH our_technical_writers W, our_editors : E DO
BEGIN

write('Enter the first name of the editor -- ');
readln(E.their_name.first);

write('Enter the last name of the editor -- ');
readln(E.their_name.last);

E.current_project := W.current_project;
END;

USING THIS EXAMPLE

This program is available online and is named with_example.

4-214 Code

Write, Writeln

Write, Writeln Writes the specified information to the specified file (or to the screen).

FORMAT

write(f, expJ :field_width, ... , expN : field_width)
{write and writeln are procedures.}

and

writeln(f, expJ :field_width, ... , expN : field_width)

ARGUMENTS

f

exp

DESCRIPTION

A variable having either the text or file data type. F is optional. If you
do not specify f, Domain Pascal writes to standard output (output) which
is usually the transcript pad. (Note that output has a text data type.)

One or more expressions separated by commas. An expression can be
any of the following:

• A string constant

• An integer, real, double, char, Boolean, or enumerated
expression

• An element of an array (assuming the element is one of the
previous types listed)

• The name of an array variable whose base type is char

Note that exp cannot be a set variable.

An integer expression that specifies the number of characters that write
or writeln uses to output the value of this argo Field_width is optional. Its
effect depends on the data type of the exp to which it applies. (We detail
these effects in the next section.) Note that you can specify field_width
only if the f has the text data type.

Write and writeln are output procedures. (Put is also. an output procedure; see the put
listing earlier in this encyclopedia.) Write and writeln both write the values of arguments

Code 4-215

Write, Writeln

expl through expN to the file specified by f. At run time, Pascal writes the value of expJ
first, the value of exp2 second, and so on until expN.

Write and writeln are identical in syntax and effect except that writeln appends a newline
character after writing the exps but write does not. In addition, when using write, f can
have a file or text data type; however, when using writeln, f must have a text data type
only.

Before calling write or writeln to write to an external file, you must open the file for writ­
ing. Chapter 8 details this process. Note that you do not need to open the standard output
(output) file before writing to it.

Following the call to write, fA is totally undefined.

The following paragraphs explain the output rules that Domain Pascal uses to print the
value of an expo

Char Variables, Array of Char Variables,

Variable-Length Strings, and String Constants

The following list shows the default field_widths for char variables, array of char variables,
variable-length strings, and string constants:

4-216 Code

• If exp is a char variable, the default field_width is 1.

• If exp is an array of char variable, the default field_width is the declared length
of the array. For example, if you declare an array named Oslo_array as

Oslo_array: array[1 .. 10] of char;

then the default field_width is 10.

• If exp is a variable-length string, the default field_width is the current length of
the string.

• If exp is a string constant, the default field_width is the number of characters in
the string.

Write, Writeln

If you do specify a field_width, here's how write and writeln interpret it:

field_width What Domain Pascal Does

= default Writes a value with no leading or trailing blanks.

> default Adds leading blanks.

< default Truncates the excess characters at the end of
the array or string.

= -1 Truncates any trailing blanks in the array.
Standard Pascal issues an error if you specify a
negative field_width. (Negative values are legal
only for types char and string.)

For example, notice how the field_widths in the following writeln statements affect output.
(The first two lines of output form a column ruler to help you notice columns.)

Domain Pascal statements

VAR
name
name_var
grade

array[l .. 20] of char;
varying [20] of char;
char;

BEGIN

Integer Values

name := 'Zonker Harris';
name_var := 'Zonker Harris';
grade : = 'F';

WRITELN(name, grade);
WRITELN(name_var, grade);
WRITELN(name:-1, grade);
WRITELN(name_var:-1, grade);
WRITELN(name:4, grade);
WRITELN(name_var:4, grade);
WRITELN(name:25, grade);
WRITELN(name_var:25, grade);

Output

1 2 3
123456789012345678901234567890
Zonker Harris F
Zonker HarrisF
zonker HarrisF
zonker HarrisF
ZonkF
ZonkF

zonker Harris F
Zonker HarrisF

The default field_width for an integer value is 10 spaces. This default applies to integer,
integerl6, integer32, and subrange variables, and to elements of an array that have one

Code 4-217

Write, Writeln

of these types as a base type. It also applies to record fields that have one of the afore­
mentioned types.

If you specify a field_width greater than the number of digits in the integer value, Domain
Pascal prints the value with leading blanks.

If you specify a field_width less than or equal to the number of digits in the integer value,
Domain Pascal writes the value without leading or trailing blanks. Note that specifying a
field_width never causes Domain Pascal to truncate the written value.

For example, consider an integer16 variable named small_int with a value of 452 and an
integer32 variable named large_int with a value of 70,600,100. Notice how the
field_widths in the following writeln statements affect output. (The first two lines of output
form a column ruler to help you notice columns.)

Domain Pascal statements Output

WRITELN(Small_int);
WRITELN(large_int);
WRITELN(Small_int:S);
WRITELN(Small_int:1);

123
123456789012345678901234567890

452
70600100
452

452

Real Values

For real exp you can supply no field_width, a one-part field_width, or a two-part
field_width with a colon separating the two parts. Here are the rules:

• If you don't supply a field_width, Domain Pascal uses 13 spaces to write a single­
precision value and 22 spaces to write a double-precision value.

• If you supply a one-part field_width, Domain Pascal adds or removes digits from
the fractional part.

• If you supply a two-part field_width, Domain Pascal interprets the first part of the
field_width as the total number of characters to print and the second part of the
field_width as the number of digits to print following the decimal point. Note that
the second part of the field_width has priority over the first part. For instance.
suppose that you request a total width (the first part) of 5 characters and a frac~
tional width (the second part) of 7 characters. Since Domain Pascal cannot satisfy
both parts, it will satisfy only the second part.

If you don't supply a two-part field_width, Domain Pascal always leaves one leading space
for positive numbers; none for negative numbers.

4-218 Code

Write, Writeln

If there is not enough room for all the digits in the number, Domain Pascal rounds the
value rather than truncating it.

For example, suppose that a single-precision real variable named velocity has a value of
43.54893. The following table shows how various writeln statements affect output. (The
first two lines of output form a column ruler to help you notice columns.)

Domain Pascal statements

WRITELN(velocity);
WRITELN(velocity:20);
WRITELN(velocity:1);
WRITELN(velocity:15:4);
WRITELN(velocity:7:4);
WRITELN(velocity:7:2);
WRITELN(velocity:3:0);
WRITELN(velocity:1:5);

Enumerated and Boolean Values

Output

123
123456789012345678901234567890

4.354893E+01
4. 3548930000000E+01
4.4E+01

43.5489
43.55

44.
43.54893

43.5489

Domain Pascal keeps the same rules for writing enumerated and Boolean values. For both
types, the default field_width is 15. Here's what happens if you specify your own
field_width:

• If you specify a field_width less than 15, Domain Pascal subtracts a suitable num­
ber of leading blanks.

• If you specify a field_width greater than 15, Domain Pascal adds a suitable num­
ber of leading blanks.

Note that Domain Pascal never truncates any of the characters in the value (even if the
field_width is less than the number of characters).

Code 4-219

Write, Writeln

The following example shows how various field_widths affect output. (The first two lines of
output form a column ruler to help you notice columns.)

Domain Pascal statements

VAR
colors
evil

(red, brown, magenta);
boolean;

Output

1 2 3
123456789012345678901234567890

EXAMPLE

BEGIN
colors := brown;
WRITELN(colors);
WRITELN(colors:8);
WRITELN(colors:1);

evil := true;
WRITELN(evil);
WRITELN(evil:2);

PROGRAM write_example;

BROWN
BROWN

TRUE

BROWN

TRUE

{ This example reads one input line from the keyboard and writes it to }
{ filename 'truth'. Then it writes a message to the display. }
CONST

pathname
VAR

'truth';

a_line
wisdom
statint

string;
text;
integer32;

BEGIN
open (wisdom, pathname, 'NEW', statint);
if statint <> 0

then return
else rewrite(wisdom);

WRITE('Enter a sentence of truth -- ');
readln(a_line);
WRITELN(wisdom, a_line);
close (wisdom) ;
WRITELN(chr(10) , chr(lO) , chr(9), 'Thank You', chr(7»;
{ ASCII 10 is a line feed. ASCII 9 is a tab. ASCII 7 is the bell. }

END.

USING THIS EXAMPLE

This program is available online and is named write_example.

4-220 Code

Xor

Xor Returns the exclusive or of two integers. (Extension)

FORMAT

xor(intl, int2) {xor is a function.}

ARGUMENTS

intI, int2 Integer expressions.

FUNCTION RETURNS

The xor function returns an integer value.

DESCRIPTION

Use the xor function to take the bitwise exclusive or of int] and int2. The xor function
belongs to the bitwise class consisting of &, !, and -, and does not belong to the Boolean
operator class consisting of and, or, and not. When matching bits for an xor function,
Domain Pascal uses the following truth table:

Table 4-14. Truth Table for xor Function

bit x bit x bit x of
of opl of op2 result

0 0 0
0 1 1

1 0 1
1 1 0

Code 4-221

Xor

EXAMPLE

PROGRAM xor_example;

{This program finds the exclusive or of two integers by using XOR. }

VAR
i1, i2, result integer16;

BEGIN
write('Enter an integer -- '); readln(i1);
write('Enter another integer '); readln(i2);
result := XOR(i1, i2);
writeln('The exclusive or of' i1:1,' and', i2:1, ' is

result: 1);
END.

USING THIS EXAMPLE

Following is a sample run of the program named xor_example:

Enter an integer -- 6
Enter another integer -- 20
The exclusive or of 6 and 20 is 18

-------88-------

4-222 Code

Chapter 5

Procedures and Functions

This chapter explains how to declare and call procedures and functions. The term rou­
tine, which appears throughout this chapter, means either procedure or function. The
terms parameter and argument also appear throughout this chapter. In this case, argu­
ment means the data passed to a routine, while parameter means the templates for the
data that the called routine receives. (Another term for argument is actual parameter;
another term for parameter is formal parameter.)

Chapter 2 mentioned that routine headings take the following format:

[attribute_list] procedure name [(parameter _list)]; [routine_options;]

or

[attribute_list] function name [(parameter _liSt)] : typename; [routine_options;]

This chapter details the parameter_list, routine_options, and attribute list.

5.1 Parameter List

You can declare a routine with or without parameters. If you declare it without parameters,
you cannot pass any arguments to the routine. If you declare it with parameters, you must
specify the data type of each argument that can be passed to the routine.

You specify parameters within a parameter list. You can specify a maximum of 65 parame­
ters within the list. A parameter list has the following format:

typenamel;

. .. ,

Procedures and Functions 5-1

The param_type (or mode) is optional; for information, see the "Parameter Types" section
later in this chapter.

A par _list consists of one or more parameters that have the same data type. Thus, the
combination

par _list : typename

is similar to a variable declaration. Like a variable declaration, each parameter in par _list
must be a valid identifier. Also, each data type must be a predeclared Domain Pascal or
user-defined data type. That is, you cannot specify an anonymous data type. (See the
"Var Declaration Part" section in Chapter 2 for more information on anonymous data
types.)

You can use a parameter in the action part of the routine just as you would use any vari­
able. Consider the following sample routine declarations:

{ Declare a procedure with no parameter list. }
Procedure simple;

{ Declare a procedure with a parameter list that has two parameters. }
Procedure con(a integer;

b : real);

{ Declare a function with a parameter list that has two parameters }
{ sharing the same data type. }

Function anger(x,y : boolean) : integer16;

{ Declare a function with a parameter list that has three parameters. }
Function big(quart integer16;

volume real;
cost single): single;

The following routine declaration is wrong because it uses an anonymous data type:

Procedure range(small_range : O .. 10); {WRONG! }

5-2 Procedures and Functions

To call a routine, simply specify its name. If the procedure. has a parameter list, you must
also specify arguments. The data type of each argument must match the data type of its
corresponding parameter. For example, if the second parameter is declared as integer16,
the second argument must be an integer16 value. The following examples call the routines
that were previously declared:

{ Call simple with no arguments. }
simple;

{ Call con with two arguments. The first argument must be an integer, }
{ and the second argument must be a real number. }

con(14, 5.2);

{ Call anger with two Boolean arguments. Variable answer must have }
{ been declared as an integer. }

answer := anger (true , false);

{ Call big with three arguments. Assume that pints is an integer and }
{ price is a real (single) number. }

if big(pints * 2, 4.23E3, price) > 1.40
then ...

Domain Pascal supports many features that let you specify precisely how a routine is to be
called. The remainder of this chapter describes these features in detail after first describing
argument passing conventions.

5.2 Argument Passing Conventions

A program or procedure can pass arguments to another procedure by value (the actual
value of the argument) or by reference (the address of the argument). By default, Pascal
passes all arguments of externally called routines by reference regardless of the parameter
type. However, you can pass arguments by value rather than by reference if you use the
val_param option in the procedure or function heading. In addition, the c_param routine
option tells the compiler to return function results in register DO (on 680xO workstations),
and to pass all record data types by value rather than by reference. This facilitates cross­
language calling with C and FORTRAN. (For more information on val_param, see Sec­
tion 5.5.7. For more information on c_param, see Section 5.5.12.)

Procedures and Functions 5-3

In an external call, even arguments with call-by-value semantics (which is the default) are
actually passed by reference. For example, consider the following code fragment:

PROCEDURE dump (size: integer);

IF size> maxsize THEN size .- maxsize;

Pascal semantics require that the change to size not affect the value of the caller's argu­
ment. The code that the Pascal compiler generates for this call takes care of this, by mak­
ing a local copy of the argument that can be modified.

Internal routines can be called only within the same compilation unit in which they are
defined. Since the compiler knows all the calls to the routine, it can optimize argument
passing without regard to the argument passing conventions. Currently, however, internal
routines are treated the same as val_param routines.

Table 5-1 summarizes Domain Pascal argument passing conventions.

NOTE: All character arrays are treated like arguments with fewer than
four bytes, regardless of their size.

Double-precision reals on Series 10000 workstations are treated
like arguments with four bytes or fewer.

5-4 Procedures and Functions

Table 5-1. Argument Passing Conventions

Mode

IN

Default Caller

Passes
addresses of
arguments.

IN OUT Passes
addresses of

V AR arguments.

No
mode

Passes
addresses of
arguments.

5.3 Parameter Types

Default Callee

Makes indirect
references to
arguments.

Makes indirect
references to
arguments.

Creates local
copies of
arguments and
makes direct
references to
them.

Modifiers

Arguments> 4 bytes

val.J>aram: No ef­
fect

internal: No effect

UNIV: No effect

val param: No ef­
fect

internal: No effect

UNIV: No effect

val param: No ef­
fect

internal: No effect

UNIV: No effect,
but considered bad
programming
practice. Since the
callee does not know
the type of the
incoming argument,
it makes a local copy
as described by the
parameter.

Arguments <= 4 bytes

val_param or internal:
Causes the caller to pass
the value of the argu­
ment and the callee to
make direct references
to it.

UNIV: Cancels the
effect of var _param
and internal.

val_param: No effect

internal: No effect

UNIV: No effect

val param or internal:
CaUSes the caller to pass
the value of the argu­
ment and the callee to
make direct references
to it.

UNIV: Cancels the
effect of val param
and internal:"
Considered bad
programming practice.
Since the callee has no
idea of the incoming
argument's type, it
makes a local copy as
described by the
parameter.

A param_type (or mode) is optional. If you do not include one, you are in effect passing
a value parameter. Value parameters are discussed in this section. If you want to specify a
param_type, it must be one of the following:

• var (a variable parameter)

• in

Procedures and Functions 5-5

• out

• in out

The following subsections describe each of these.

5.3.1 Variable Parameters and Value Parameters

In standard Pascal, you pass arguments to and from routines as variable parameters or
value parameters. Domain Pascal supports both methods plus certain extensions described
later in this subsection. The following examples illustrate the distinction between variable
parameters and value parameters.

Pascal regards variable parameters as synonyms for the variable you pass to them. In
Figure 5-1, a program named var_parameter_example, variable parameter y becomes a
synonym for argument x; that is, whatever happens to y in addc happens also to x (and
vice versa). You must pass a variable as an argument to a variable parameter. You cannot
pass a value.

Pascal does not regard value parameters as synonyms to the arguments you pass to them.
In Figure 5-2, a program named value_parameter_example, value parameter y takes on
a copy of the value of x within addc; therefore, whatever happens to y in addc has no
effect on the value of x. Note that you can pass variables, values, or expressions as argu­
ments to a routine with value parameters.

Both sample programs are available online.

{**}
PROGRAM var_parameter_example;
{ Compare this program to value_parameter_example. }
VAR

x : integer16;
PROCEDURE ad de (VAR y
BEGIN

Y := Y + 100;

integer16); { y is a variable parameter. }

writeln('In adde, y=',y:4);
END;
BEGIN

x := +10;
adde(x);
writeln('In main, x=',x:4);

END.
{**}

Figure 5-1. Program Illustrating Variable Parameters: var_parameter_example

5-6 Procedures and Functions

{**}
PROGRAM value_parameter_example;
{ Compare this program to var_parameter_example. }
VAR

x : integer16;
PROCEDURE addc(y integer16); { y is a value parameter. }
BEGIN

Y := Y + 100;
writeln('In addc, y=',y:4);

END;
BEGIN

x := +10;
addc(x);
writeln('In main, x=',x:4);

END.
{**}

Figure 5-2. Program Illustrating Value Parameters: value_parameter_example

The results of the sample programs in Figure 5-1 and Figure 5-2 are shown below.

Execution of
var_parameter_example

In addc, y= 110
In main, x= 110

Execution of
value_parameter_example

In addc, y= 110
In main, X= 10

The only difference between the two programs is the keyword var in the procedure decla­
ration statement of varyarameter_example. This keyword identifies y as a variable pa­
rameter; the absence of var identifies y as a value parameter.

5.3.2 In, Out, and In Out-Extension

In standard Pascal, you cannot specify the direction of parameter passing. However, Do­
main Pascal supports extensions to overcome this problem. You can use the following key­
words in your routine declaration:

• In-This keyword tells the compiler that you are going to pass a value to this pa­
rameter, and that the routine is not allowed to alter its value. If the called rou­
tine does attempt to change its value (that is, use the parameter on the left side of
an assignment statement), the compiler issues an "Assignment to IN argument"
error.

• Out-This keyword tells the compiler that you are not going to pass a value to the
parameter, but that you expect the routine to assign a value to the parameter. It is
incorrect to try to use the parameter before the routine has assigned a value to it,
although the compiler does not issue a warning or error in this case.

Procedures and Functions 5-7

If the called routine does not attempt to assign a value to the parameter t the com­
piler may issue a "Variable was not initialized before this use" warning. This could
occur if your routine assigns a value to the parameter only under certain condi­
tions. If that is the case, you should designate the parameter as var instead of
out.

In some cases, the compiler cannot determine whether or not· all paths leading to
an out parameter assign a value to it. If that happens, the compiler does not issue
a warning message.

• In out-This keyword tells the compiler that you are going to pass a value to the
parameter, and that the called routine is permitted to modify this value. It is in­
correct to call the routine before assigning a value to the parameter, although the
compiler does not issue a warning or error in this case. The compiler also doesn't
complain if the called routine does not attempt to modify this value.

For example, consider the program shown in Figure 5-3, which is also available online.

5-8 Procedures and Functions

{**}
PROGRAM in_out_example;

{This program demonstrates the IN, OUT, and IN OUT parameters.}
VAR

leg1, leg2 : integer16;
hypotenuse single;
temp real;
unit : char;

PROCEDURE pythagoras(IN
IN
OUT

BEGIN

leg1
leg2

hypotenuse

integer16;
integer16;
single);

hypotenuse .- sqrt«leg1 * leg1) + (leg2 * leg2»;
END;

FUNCTION boiling(IN OUT
IN

BEGIN
if uni t 'F'

temp
unit

real;
char) boolean;

then temp := (temp - 32) * 0.55555;
if temp >= 100

then boiling := true
else boiling := false;

END;

BEGIN
write('Enter the length of a leg of a right triangle --');
readln(leg1);
write('Enter the length of the other leg --'); readln(leg2);
pythagoras(leg1, leg2, hypotenuse);
writeln('Hypotenuse of the triangle is " hypotenuse);

writeln(chr(10), chr(10) , 'Assume 1 Atm. pressure');
write('Enter the water temperature --'); readln(temp);
write('Is this temp. in Fahrenheit or Celsius (F or C) -- ');
readln(unit);

if boiling(temp, unit)
then writeln(temp:5:1, ' degrees C water will boil!')
else writeln(temp:5:1, ' degrees C water will not boil.');

END.
{**}

Figure 5-3. Program Illustrating in, out, and in out Value Passing: in_out_example

NOTE: The compiler checks for misuses of in, out, and in out at compile
time, but the system does not check for such errors at run time.

Procedures and Functions 5-9

5.3.3 Univ-Universal Parameter Specification-Extension

U niv is a special parameter type that you specify immediately prior to the typename (rather
than prior to the par_list). You use univ to pass an argument that has a different data
type than its corresponding parameter.

By default, Domain Pascal checks that the argument you pass to a routine has the same
data type as the parameter you defined for the routine. However, you can tell Domain
Pascal to suppress this type checking by using the keyword univ prior to a type name in a
parameter list.

Univ is especially useful for passing arrays. For example, the following program would be
incorrect without the keyword univ. That's because little_array and big_array have differ­
ent data types:

TYPE

VAR
large_array
medium_array
little_array
sum

array[l .. 50] of integer32;

array[l .. 50] of integer32;
array[l .. 25] of integer32;
array[l .. 10] of integer32;
integer32;

Procedure sum_elements(in b UNIV big_array;
integer16;
integer32) ;

BEGIN

END;

BEGIN {main}

in array_size
out sum

sum_elements (little_array, 10, sum);
END.

In addition to the procedure call listed above, you could also make either of the following
calls to procedure sum_elements:

sum_elements (medium_array, 25, sum);

or

sum_elements (large_array, 50, sum);

Use univ carefully I It can cause problems if improperly used. The most frequent source Of
trouble is a difference in size between the argument and parameter data types. The data
type of the parameter determines how the called routine treats the data passed to it. Typi­
cally, routines that use univ parameters have another parameter that supplies additional
information about the size or type of the argument. In the preceding example, the ar­
ray_size parameter gives the size of the array parameter passed. In addition, you should

5-10 Procedures and Functions

not pass an argument that is larger than the parameter. If you do, your program may pro­
duce unexpected results. The following example shows this misuse of univ:

Program univ_example; {POOR USE OF UNIV!!!}

{This example demonstrates poor use of UNIV.}
{The program uses UNIV to pass two double-precision arguments to two}
{single-precision parameters. The calculation of 'mean' will not be}
{correct because single- and double-precision real numbers have }
{different bit patterns for exponent and mantissa. Furthermore, }
{the compiler will not warn you about this problem. }

VAR
first_value, second_value : double;

Procedure average(s,t
VAR

mean
BEGIN

double;

UNIV single);

mean := (s + t) / 2.0;
writeln('The average is ,mean);

END;

BEGIN {main}

END.

write('Enter the first value --'); readln(first_value);
write('Enter the second value --'); readln(second_value);
average (first_value , second_value);

NOTE: To prevent some problems that result from suppressing type
checking, explicitly declare univ parameters as in, out, in out, or
var.

When you pass an expression argument (as opposed to a variable argument) to a univ pa­
rameter, Domain Pascal extends the expression to be the same size as the univ parameter.
o In addition, the compiler issues the following message:

Expression passed to UNIV formal NAME was converted to NEWTYPE.

5.3.4 Pointers to Routines-Extension

As noted in Chapter 3, Domain Pascal supports a special pointer data type that points to
a procedure or a function. You can use these routine pointers in combination with the
addr function to pass addresses of routines as parameters.

For example, the sample program in Figure 5-4, which is also available online, returns the
square of the number provided by the user. It is a simple illustration of the use of a rou­
tine pointer as a parameter. Note that the square function must be in an external mod­
ule. You cannot obtain the addresses of internal routines. See the "Procedure and
Function Pointer Data Types-Extension" section of Chapter 3 for more details about de­
claring routine· pointers.

Procedures and Functions 5-11

{**}
PROGRAM pass routine ptrs;
{ This program prompts the user for a number and returns the square }
{ of the number. The procedure write_square uses a routine pointer }
{ to call the external function square. To run the pass_routine_ptrs }
{ program you must compile the square.pas module and then bind }
{ together square. bin and pass_routine-ptrs.bin. }

TYPE
func_ptr AFUNCTION (x:integer) : integer;

{declaration of routine pointer}
VAR
number: integer;
FUNCTION square (x:integer):integer; EXTERN;
PROCEDURE write_square(a_ptr:func_ptr; y:integer);

BEGIN
writeln('The square of the number is ',a_ptrA(y»;
END;

BEGIN
write('What number would you like to square? ');
readln(number);
write_square (addr(square) , number);
END.

MODULE square;
{This function is called by the pass_routine_ptrs program}

FUNCTION square (x:integer):integer;
BEGIN
square := x*x;
END;
{**}

Figure 5-4. Program and Module Illustrating Pointers to Routines: pass_routine_ptrs
and square

Here is a sample run of the compiled and bound pass_routine_ptrs program:

What number would you like to square? 25
The square of the number is 625

5-12 Procedures and Functions

5.3.4.1 Data Type Checking

The compiler checks pointers to routines for data type name compatibility when addresses
are assigned to a pointer or procedure. For example, assume you use the statements
shown below to declare a data type, a pointer to a routine, and a procedure named foo:

TYPE
pinteger 0 ... 65535;

VAR
pptr: APROCEDURE (r: pinteger);

PROCEDURE faa (r: integer);

The type pinteger is defined as a subrange of base type integer. The pointer pptr points
to a procedure that takes one parameter of type pinteger. The procedure foo, however,
takes one parameter of type integer. Even though pinteger and integer are both 16-bit
integers, the following assignment statement causes an error because integer and pinteger
are not name compatible (that is, they do not have the same name):

pptr := addr(foo);

5.4 Procedures and Functions as Parameters

Any procedure or function can be a parameter for any other procedure or function. Pro­
cedure and function parameters must appear in the parameter list. If the function or pro­
cedure being passed has parameters, these parameters must also appear in the declaration.
For example:

PROCEDURE caller (PROCEDURE callee (A, B : integer));

Function parameters must specify the type they return, for example:

PROCEDURE caller (FUNCTION cal lee : integer);

A function or procedure that is a parameter may also contain functions or procedures as
parameters; for example:

PROCEDURE caller (FUNCTION A (PROCEDURE B) : integer);

You pass the name of a procedure or function just as you would any other parameter.
Only the name of the procedure or function is specified. Its parameter list, if any, does
not appear here. For example:

caller (callee);

The following example uses a procedure as a parameter.

Procedures and Functions 5-13

5-14

{**}
PROGRAM procedure as parameter;
{This program inv~kes a procedure that has another procedure as a
parameter.}

VAR
I : integer;

Procedure square;
BEGIN

I :== I * I;
END;

Procedure callproc (procedure A);
BEGIN

A;
END;

{Invokes procedure A}

BEGIN {main program}
I :== 3;
callproc(square);
writeln(I)

END.

{procedure square is the parameter.}
{I == 9}

{**}

The following example uses a function as a parameter.

{**}
PROGRAM function as parameter;
{This program in;ok~s a function that has another function as a
parameter.}

VAR
I, val: integer;

Function value : integer;
BEGIN

value :== 4;
END;

{Function value is 4.}

Function cube(Function a : integer) : integer;
BEGIN

cube :== a * a * a
END;

BEGIN

END.

I :== cube(value)
writeln(value);
writeln(I);

{Cubes the function value.}

{Argument is Function value.}

{I == 64}

{**}

Procedures and Functions

5.5 Routine Options

As mentioned in the beginning of this chapter, you can optionally specify routine_options
at the end of the routine declaration. Domain Pascal supports the following routine op-
tions:

• forward

• extern

• internal

• variable

• abnormal

• val_param

• nosave

• noreturn

• dO_return

• aO_return

• c_param

5.5.1 Routine Option Syntax

Use the following format to specify any of the routine options:

options (routine_option 1 , ... routine_optionN);

Here are some examples of this format:

FUNCTION eggs_and_ham(letter: char) : char; INTERNAL;

PROCEDURE sam_i_am(x. y : real); OPTIONS (EXTERN. ABNORMAL);

You can use the shorter format shown below only for the forward. extern, internal, and
val_param routine options:

routine _option 1 ; . . . routine _optionN;

Here are some examples of the shorter format:

FUNCTION eggs_and_ham(letter: char) : char; INTERNAL;

PROCEDURE sam_i_am(x. y : real); EXTERN; val_param;

The remainder of this section explains the routine options.

Procedures and Functions 5-15

5.5.2 forward

The forward option is a feature of standard Pascal and Domain Pascal. By default, you
can call only a routine that was previously declared in the program. The forward option
identifies the procedure prior to both its use (call) and its definition.

Figure 5-5 is a program named forward_example, which is available online. In this pro­
gram, the procedure convert_degrees_to_radians is declared as forward. This allows pro­
cedure find_tangent to call procedure convert_degrees_to_radians even though
find_tangent precedes it in the file.

{**}
PROGRAM forward_example;

{This program demonstrates the FORWARD option}

Function convert_degrees_to_radians(d : real) : real; FORWARD;

VAR
degrees, tangent: real;

Procedure find_tangent(IN degrees
out tangent

VAR
radians : real;

BEGIN

real;
real);

radians .- convert_degrees_to_radians(degrees);
tangent:= sin(radians) / cos(radians);

END;

Function convert_degrees_to_radians(d
CONST

degrees~per_radian = 57.2958;
BEGIN

real) real;

convert_degrees_to_radians .- (d / degrees_per_radian);
END;

BEGIN
write('Enter a value in degrees -- ');
readln(degrees);
find_tangent (degrees , tangent);
writeln('The tangent of " degrees:6:3, ' is " tangent:6:3);

END.
{**}

Figure 5-5. Program Illustrating the forward Option: forward_example

If it were not for the forward option, the compiler would issue the following error:

CONVERT_DEGREES_TO_RADIANS has not been declared in routine FIND_TANGENT

Note that the program in Figure 5-5 declares function convert_degrees_to_radians and its
parameters in the declaration part of the main program and in the routine heading.

5-16 Procedures and Functions

Domain Pascal allows you to choose whether to include parameters in the routine heading.
Thus, you could substitute the following routine heading for the one shown above:

Function convert_degrees_to_radians; {No parameters included here.}

In any case, you must include the forward option in the declaration part of the main pro­
gram.

5.5.3 extern-Extension

Extern is an extension to standard Pascal. It tells the compiler that the routine is possibly
defined outside of this source code file. (The" Accessing a Variable Stored in Another
Pascal Module" and "Accessing a Routine Stored in Another Pascal Module" sections of
Chapter 7 detail extern. See also define, which is also detailed in the same sections of
Chapter 7.)

5.5.4 internal-Extension

Internal is an extension to standard Pascal. By default, all top-level routines defined in a
module become global symbols. But if you declare the routine with the internal option,
the compiler makes the routine a local symbol. (The" Accessing a Variable Stored in An­
other Pascal Module" and" Accessing a Routine Stored in Another Pascal Module" sec­
tions of Chapter 7 detail internal.) Declaring routines "internal" results in slightly more
efficient code and faster linking/loading.

5.5.5 variable-Extension

Variable is an extension to standard Pascal. By default, you must pass the same number
of arguments to a routine each time you call the routine. However, the variable option
allows you to pass a variable number of arguments to the routine. You may want to spec­
ify an argument count as the first parameter. There is one case in which you cannot use
the variable extension. You must supply an argument if the called routine makes a local
copy of any parameter. See Section 5.2 for more information on argument passing con­
ventions.

Figure 5-6 is a sample program named variable_attribute_example that is available on­
line. It illustrates the use of the variable option.

Procedures and Functions 5-17

I

{**}
PROGRAM variable_attribute_example;

{This program demonstrates the routine attribute called VARIABLE which}
{ allows you to pass a variable number of arguments to a routine. }

VAR
first_value, second_value
precision : real;

real;

answer : char;

Procedure average(arg_count : integer16;
d1, d2 real;
p : real);
options(VARIABLE);

{We can pass up to four arguments.}
VAR

mean: real;
BEGIN

mean := (d1 + d2) / 2.0;

mean is
4) and
mean is
4) and
mean is

mean:4:1, , to a precision
(p = 0.01)
, mean:4:2, , to a precision ,

(p = 0.001)
, mean:4:3, , to a precision ,

if arg_count = 3
then writeln('The

else if (arg_count =
then writeln('.The

else if (arg_count =
then writeln('The

else
writeln('Improper argument count or precision');

END;

BEGIN {main}

of 0.1')

of .01')

of .001')

writeln('This program calculates the mean of two real numbers.');
write('Enter the first value --'); readln(first_value);
write('Enter the second value --'); readln(second_value);
write('Do you want to specify a precision (enter y or n) --');
read In (answer) ;
if answer = 'y' then

begin

end
else

END.

write('Please enter the precision (.01 or .001) --');
readln(precision);
average (4 , first_value, second_value, precision);

average (3 , first_value, second_value);

{**}

Figure 5-6. Program Illustrating the variable Option: variable_attribute_example

5-18 Procedures and Functions

5.5.6 abnormal-Extension

Abnormal is an extension to standard Pascal. It warns the compiler that a routine can
cause an abnormal transfer of control. This option affects the way the compiler optimizes
the calling routine, but does not affect the way the compiler optimizes the called routine
(that is, the routine that is declared abnormal).

For example, the following use of abnormal causes the compiler to be careful about opti­
mizing around any cleanup handler:

FUNCTION pfm_Scleanup (current_record: clean_up_record) :
status_ST; OPTIONS(ABNORMAL);

5.5.7 valj>aram-Extension

ValJJaram is an extension to standard Pascal. By default, Pascal passes arguments by ref­
erence. This means that Domain Pascal passes the address of the argument rather than the
value of the argument, regardless of the declared parameter type (in, out, in out, or var).
When you use the val Jaram option in a procedure or function heading, you tell Domain
Pascal to pass arguments by value when possible. Under the val_param option, all argu­
ments four bytes or less in size (on 680xO workstations) and 8-byte double-precision reals
on Series 10000 workstations (except for character arrays) are passed by value, provided
that they are declared as value parameters or as in parameters. All other arguments are
passed by reference. See Table 5-1 for a summary of the use of val_param with different
qualifiers.

This option produces more efficient calling sequences for Domain Pascal routines. How­
ever, when you are writing a routine that calls a Domain/C routine, you should use the
cJaram option. (See Section 5.5.12 for details about c_param.)

The following example illustrates a val_param option in a function declaration. The first
declaration uses the standard syntax. The second uses the shorter syntax:

FUNCTION pass_value (letter char) char; OPTIONS (EXTERN, VAL_PARAM);

FUNCTION pass_value (letter char) char; EXTERN; VAL_PARAM;

5.5.8 nos ave-Extension

Nosave is an extension to standard Pascal. You should use it with a Pascal program call to
an assembly language routine that doesn't follow the usual conventions for preserving these
registers:

• Data registers D2 through D7

• Address registers A2 through A4

• Floating-point registers FP2. through FP7

Procedures and Functions 5-19

Nosave indicates that the contents of these registers will not be saved when the assembly
language routine finishes executing and returns to the Pascal program. However, the assem­
bly language routine must always preserve register AS, which holds the pointer to the cur­
rent stack area. It also must always preserve A6, which holds the address of the current
data area. That is, the called routine must preserve AS and A6 even if you use nosave.

5.5.9 noreturn-Extension

Noreturn is an extension to standard Pascal. This routine specifies an unconditional trans­
fer of control; once a procedure or function with noreturn is called, control can never
return to the caller. The routine marked noreturn is executed, and the program termi­
nates.

When you specify this keyword, the compiler may optimize the code it generates so that
any return sequence or stack adjustments after the call to the routine marked noreturn are
eliminated as being unreachable code.

5.5.10 dO_return-Extension

The dO_return option is an extension to standard Pascal. By default, a Pascal function
returning the value of a pointer puts that value in address register AO. When you use the
dO_return option, the compiler does the following:

• Puts the value of the returned pointer in AO and also in data register DO.

• Causes routines that call a function marked dO_return to expect the value of the
returned pointer variable to be in DO.

You should use dO_return in the heading for Pascal functions that call external C or FOR­
TRAN routines because C and FORTRAN return function results in DO.

For example, consider the following routine heading:

function string_c : string_ptr; options (extern,dO_return);

The preceding declaration tells the compiler to expect the string_ptr type value returned
by string_ c to be in register DO.

NOTE: The second character in this option is a zero, not a capital O.

5.5.11 aO_return-Extension

The aO_return option is an extension to standard Pascal. It is allowed on any function
signature. If you specify aO_return for a Pascal routine, the compiler does the following:

• Puts into AO any values returned from that routine that should go into a register.

• Looks in AO for any values returned to a caller of that routine.

NOTE: The second character in this option is a zero, not a capital O.

5-20 Procedures and Functions

5.5.12 c j)aram-Extension

The cyaram option is an extension to standard Pascal. Specifying c_param is equivalent
to specifying dO_return and valyaram. In addition, the cyaram option tells the com­
piler to pass all record data types by value rather than by reference. For an example of
this option, see Section 7.9.5.

Any Pascal procedure that calls or is called by a C program must use the c_param option
to pass by value any single-precision or double-precision floating-point, record or struct,
simple datum, or pointer.

The following example illustrates the use of a c_param optionin a function declaration:

FUNCTION c_function (letter: char) : char; OPTIONS (EXTERN , C_PARAM);

NOTE: Using the c_param option does not guarantee that the size of
arguments passed by value from a Domain Pascal routine will
match the size of arguments in the Domain/C called routine. For
example, when you pass Domain Pascal integer, integerl6, char
values to Domain/C, the compiler does not widen them to 32 bits
as Domain/C does. Similarly, when you pass Domain Pascal real
values, the compiler does not widen them to 64 bits. Thus, if you
use c_param, you must make sure that you declare the parame­
ters that you pass from Domain Pascal to Domain/C to be the
correct size.

5.6 Defining Your Own Routine Options

In addition to the predeclared routine options, Domain Pascal supports a routine_option
declaration part that allows you to define your own names for groups of routine options.
Furthermore, Domain Pascal provides a special name-default_routine_options-that al­
lows you to define the default routine options for every routine in a module. We describe
both of these features in this section.

5.6.1 Syntax of the routine_option Declaration Part

The syntax for the routine_option declaration part is as follows:

routine_option
identifier 1 = routine _option_name 1

[. routine_option_name2 • ...• routine_option_nameN]:

[identi/ierN = routine_option_namel

[. routine_option_name2 • ...• routine_OPtion_nameN]:]

Procedures and Functions 5-21

I

An identifier is any valid Domain Pascal identifier. A routine_option~name is the identifier
of a routine option that you created earlier in the routine option declaration part or any
of the following predeclared Domain Pascal routine options:

abnormal c-param

noreturn val-param variable

The following routine options cannot appear in a routine_option declaration part:

extern forward internal

5.6.2 Examples of the routine_option Declaration Part

Here's a sample routine_option declaration part along with a corresponding routine head­
ing:

ROUTINE_OPTION
my_C_routine_options aO_return, dO_return, c_param;

The above declaration tells the compiler to handle the procedure calling_a_C_module as
if it specified aO_return, dO_return, and c_param in its routine heading.

5.6.3 Rules for Using the routine_option Declaration Part

You can use routine options that you define in a routine_option declaration part in any
context that you can use the predeclared routine options included in the definition.

5.6.4 Using default_routine_options

You can use the special name default_routine_options for the list of options that you de­
clare in a routine_option declaration part. If you do so, then the options that you define
in your list are used as the default routine options for every subsequent routine in that
module that does not specify a routine option. The rules for the scope of default_rou­
tine_options are the same rules that Domain Pascal follows for the scope of variables.

5-22 Procedures and Functions

For example, consider the following fragment:

ROUTINE_OPTION
default_routine_options

PROCEDURE fee;

PROCEDURE fie;

PROCEDURE foe;

PROCEDURE fum;

The preceding declarations tell the compiler to handle the procedures fee, fie, foe, and
fum as if each one specified aO_return, dO_return, and val_param as routine options in
its routine heading. In other words, they have the same effect as:

PROCEDURE fee; OPTIONS (aO_return, dO_return, val_param);

PROCEDURE fie; OPTIONS (aO_return, dO_return, val_param);

PROCEDURE foe; OPTIONS (aO_return, dO_return, val_param);

PROCEDURE fum; OPTIONS (aO_return, dO_return, val_param);

You can override the default_routine_options for any routine by specifying different rou­
tine options for that particular routine. The override does not affect the other routines.

Continuing the previous example, assume you have defined default_routine_options as
listed previously for a module that contains the fee, fie, foe, and fum procedures.

Procedures and Functions 5-23

However, you do not want to apply all of the default_routine_options to the foe proce­
dure. You can change the routine heading for foe as follows:

ROUTINE_OPTION
default_routine_options

PROCEDURE fee

PROCEDURE fie;

PROCEDURE foe; OPTIONS (abnormal)

PROCEDURE fum;

The above set of declarations tells the compiler to handle the foe procedure as if it speci­
fied just one routine option-namely, the abnormal option.

5.7 Attribute List-Extension

As noted in the beginning of this chapter, you can declare an optional routine attrib-
ute _list at the beginning of a routine heading. With this list, you can specify a nondefault
section name for the code and data of a routine. The attribute_list affects a routine body,
while the routine_options affect the routine interface.

The attribute_list consists of one or more routine attributes enclosed by brackets. Domain
Pascal currently supports the section routine attribute.

5.7.1 Section-Extension

By using the routine attribute section, you can specify a nondefault section name for the
code and data in a routine. A "section" is a named contiguous area of an executing ob­
ject. (See the Domain/OS Programming Environment Reference for details on sections.)

By default, the compiler assigns code to the . text section and data to the . data section.
Thus, by default, all code from every routine in the program is assigned to . text, and all
static data from every routine in the program is assigned to .data. However, Domain Pas­
cal permits you to override the default of .text and .data on a routine-by-routine basis.
(You can also override the defaults on a variable-by-variable or module-by-module basis.)

You can use the section routine attribute to organize the run-time placement of routines
so that logically related routines can share the same page of main memory and thus reduce
page faults. Likewise, you can declare a rarely called routine as being in a separate section
from the frequently called routines.

5-24 Procedures and Functions

To override the default sections, preface your routine heading with a phrase of the follow­
ing format:

[section (codesect, datasect)] procedure . . .

or

[section (codesect, datasect)] function .

To specify an alternate data section while keeping the default . text section, use the follow­
ing syntax:

[section (, datasect)] procedure . . .

or

[section (, datasect)] function . . .

If you omit either the codesect or the datasect, the present default continues to take ef­
fect.

For example, consider the following fragment:

Program example;
VAR stat: integer; { In .data }

PROCEDURE top; { In . text }
VAR datI : static integer; { In . data }
BEGIN

{ In .text }
END;

[SECTION (npc, npd)] FUNCTION foobarl REAL; { In "npc" }
VAR seed : static real; { In "npd" }
BEGIN

{ In "npc" }
END;

[SECTION (error_rout_c, error_rout_d)] PROCEDURE xxx; {In error_rout_c }
VAR check: static integer32; {In error_rout_d }
BEGIN

END;

FUNCTION regular : integer; { In . text }
VAR dat2 : static real; { In .data }
BEGIN

{ In . text }
END;

Procedures and Functions 5-25

[SECTION (npc, npd)] PROCEDURE foobar2;
VAR seedling: static real;
BEGIN

END;

BEGIN {main}
{ In .text }

END;

{ In "npc"· }
{ In "npd" }

{ In "npc" }

Nested routines inherit the section definitions of their outer routine unless they specify
their own section definitions. For example, if the foobarl function contained nested rou­
tines, Domain Pascal defaults to placing their code and static data into the "npc" and
"npd" sections respectively.

5.8 Recursion

A recursive routine is a routine that calls itself. Domain Pascal, like standard Pascal, sup­
ports recursive routines. The following example demonstrates a recursive method for cal­
culating factorials:

PROGRAM recursive_example;
{ Demonstrates recursion by calculating a factorial. }

VAR
x, y : integer32;

Function factorial(n
BEGIN

integer32) integer32;

if n = 0
then factorial := 1
else factorial := n * factorial(n-l); {factorial calls itself.}

END;

BEGIN {main}
writeln('This program finds the factorial of a specified integer.');
write('Enter a positive integer (from 0 to 16) --'); readln(x);
y := factorial(x);
writeln('The factorial of " x:l, ' is " y:l);

END.

----88----

5-26 Procedures and Functions

Chapter 6

Program Development

This chapter describes how to produce an executable object file (that is, a finished pro­
gram) from Domain Pascal source code. There are three Domain environments in which
you can develop programs: Aegis, SysV, and BSD. Where the development process differs
from one environment to another, we describe each environment separately.

6.1 Program Development in a Domain Environment

Briefly, you create an executable object file using the following steps:

1. Compile each file of source code that constitutes the program. The compiler cre­
ates one object file for each file of source code.

2. Link (bind) the object files if necessary. Linking is necessary if your program
consists of more than one object file. The linker resolves external references; that
is, it connects the different object files so that they can communicate with one
another. Before linking, you may wish to package related object files into a li­
brary file with the UNIX archiver utility or the Aegis librarian.

3. Debug or execute the program.

Figure 6-1 illustrates the general program development process. As described in later sec­
tions, the details differ somewhat depending on whether you are developing programs in an
Aegis or UNIX environment.

Program Development 6-1

Find
errors

Yes

Begin

Edit

Compile

Execute
object

file

Errors
?

~---s-4

No

End

Figure 6-1. Program Development in a Domain System

This chapter details the compiler and provides brief overviews of the linker (binder), and
debugger utilities.

In addition to the traditional programming development scheme shown in Figure 6-1, you
can also use the Domain Software Engineering Environment (OSEE) system to develop
Pascal programs. This chapter also contains a brief description of Domain/Dialogue, a
product that simplifies the writing of user interfaces.

6-1 Program Development

Use the pas command to preprocess and compile a single source file (plus %included
files), and produce a single object file. If your program contains more than one object
file, you must link the object files together with the bind or Id command. These two com­
mands perform similar operations: bind invokes the Aegis binder; Id is the UNIX link edi­
tor. You can use either command to link object modules together. Use the -b binder op­
tion to tell the binder to create one executable object file.

If your program accesses routines in a user-supplied library, you need to link your program
with the user-supplied library.

6.2 Compiler Variants

We have four different variants of the Domain Pascal compiler. The four variants differ in
the kind of machine they run on and the kind of machine for which they generate code.
The variants are

• MC680xO native compiler

• Series 1 0000 (PRISM) native compiler

• MC680xO-to-PRISM cross compiler

• P RISM-to-MC680xO cross compiler

You probably have two of these four variants installed on your system, but you may be
able to use the other two by means of links to other systems. To find out which variant of
the compiler you are using, use the -version option of the pas command. The following
codes indicate the variants:

68K MC680xO native compiler

PRISM Series 1 0000 (PRISM) native compiler

68K=>PRISM MC680xO-to-PRISM cross compiler

PRISM=>68K PRISM-to-MC680xO cross compiler

Where the compiler differs from one variant to another, we describe each variant sepa­
rately; otherwise, you can assume that all four variants of the compiler behave the same.

Program Development 6-3

6.3 Compiling

You compile a Domain Pascal source code file in any Domain/OS environment by entering
the following command:

$ pas souTce"'pathname [optionl ... optionN]

SourceJathname is the pathname of the source file you want to compile. You can com­
pile only one source file at a time. In order to simplify your search for Pascal source pro­
grams, we recommend that source Jathname end with a • pas suffix. If you use the suffix,
you need not specify it in the compile command line.

The compile command line can contain one or more of the options listed in Table 6-2.
Note that you cannot abbreviate these options.

For example, consider the following three sample compile command lines, all of which
compile source code file circles. pas:

$ pas circles

$ pas circles -I

$ pas circles -map -exp -cond -cpu 3000

6.3.1 Compiler Output

If there are no errors in the source code and the compilation proceeds normally, the com­
piler creates an object file in your current working directory.

The compiler names the files it creates according to the following rules:

• If the source pathname ends with . pas, the compiler rep/aces that suffix with . bin.

• If the source pathname does not end with . pas, then by default Domain Pascal
gives the object file the same pathname as the source pathname, but with the . bin
suffix.

• If you want the object file to have a non-default name, use the -':b pathname
option.

Table 6-1 shows examples for each of these rules.

6-4 Program Development

Table 6-1. Sample Object File Names

Source Code Command Object File Name

Source code file extra text. pas $ pas extratest extra test. bin
named with .pas or
suffix $ pas extratest.pas

Source code file test. first $ pas test.first test. first. bin
named with other
suffix

Source code file
test $ pas test / / good/ compilers/newtest. bin named with no

suffix -b II good/ compiIers/newtest

6.4 Compiler Options

Domain Pascal supports a variety of compiler options. Table 6-2 summarizes the options,
and the following sections describe all the options in detail.

Program Development 6-5

Table 6-2. Domain Pascal Compiler Options

Option What It Causes the Compiler to Do

-ac Produce absolute code. The compiler sets the load address at compile
time, and therefore your program runs faster. Default for MC680xO
compiler variants, invalid for Series 10000 compiler variants.

-pic Produce position-independent code). The compiler uses relative
addressing for your data and sets the address at run time. Default for
Series 10000 compiler variants.

'* -alnchk Display messages about alignment of data structures. Default for
Series 10000 compiler variants.

'* -b pathname Generate a binary file in the current directory at
sourceJile_name.bin, or in another file at pathname.bin.

-nb Suppress creation of binary file.

'* -bounds_violation Allow referencing beyond the end of an array. Optimization of
code is less efficient.

-no_bounds _ violation Do not allow referencing beyond the end of an array. This
option allows superior optimization of the code.

-comchk Issue a warning if comments are not paired correctly.

'* -ncomchk Suppress checking for paired comments.

'* -compress Store the object file in compressed form.

-ncompress Store the object file in noncompressed form.

-cond Compile lines prefixed with the %debug compiler directive.

'* -ncond Ignore lines prefixed with the %debug compiler directive.

-con fig varl ... varN Set special conditional compilation variables to true.

-cpu id Generate code for a particular workstation type. The id argument is
usually one of the following: mathlib_srlO, mathlib, or mathchip.
The default for MC680xO compilers is mathlib_srlO. The only valid
argument for Series 10000 compilers is a88k.

'* denotes a default option

(Continued)

6-6 Program Development

Table 6-2. Domain Pascal Compiler Options (Cont.)

Option What It Causes the Compiler to Do

-ndb Suppress creation of debugging information. The debugger cannot
debug such a program.

* -db Generate minimal debugging information. When you debug this
program, you can set breakpoints, but you can't examine variables.

-dbs Generate full debugging information and optimize the code in the
executable object file. (Implies -opt 3.)

-dba Generate full debugging information but don't optimize the code
in the executable object file.

-exp Generate assembly language listing (implies -I).

* -nexp Suppress creating assembly language listing.

-frnd Round floating-point numbers at key points during program
execution.

* -nfrnd Optimize execution by computing floating-point expressions in
greater precision than that specified by the program, when the
compiler detects an opportunity to do so.

-idir dirl ... dirN Search for an include file in alternate directories.

-imap Generate symbol table maps for %included files (implies -map).

* -nimap Suppress creation of symbol table maps for %included files
(implies -nmap).

-indexl Produce a 32-bit index for all array references.

* -nindexl Refer to source code for array reference index information.

-info n Display information messages to the nth level. n is an optional
specifier that must be between 0 and 4. If n is omitted, or the entire
switch is omitted, display information messages to level 2.

-inlib pathname Load pathname (a PIC binary file) at run time and resolve global
variable references. Thus you can use pathname as a library file for
many different programs.

-iso Compile the program using ISO/ANSI Standard Pascal rules for
certain Domain Pascal features that deviate from the standard.

* -oiso Compile the program using Domain Pascal features.

-I pathname Generate a listing file at program_name. 1st or pathname.lst.

* -01 Suppress creation of listing file.

* denotes a default option
(Continued)

Program Development 6-7

Table 6-2. Domain Pascal Compiler Options (Cont.)

Option What It Causes the Compiler to Do

-map Generate symbol table map (implies -I).

* -nmap Suppress creation of symbol table map.

-msgs Generate final error and warning count message.

* -nmsgs Suppress creating final error and warning count message.

-natural Set environment to natural alignment. Has the same effect
as the %natural_alignment compiler directive.

-nnatural Suppress setting the environment to natural alignment.

-nclines Suppress the generation of COFF line number tables so as to
save space in the object file. Valid option for MC680xO
compiler variants only.

* -opt n Cause the compiler to perform global program optimizations to
the nth level, where n is between 0 and 4. If n is omitted, or
if the option is omitted. the default optimization level is 3.

* -prasm Create an expanded listing in Series 10000 assembly-code
format, if -exp is specified and if Series 10000 code is being
generated.

-nprasm Create an expanded listing in alternate assembly-code format.

-sUb pathname Treat the input as an include file and produce a precompiled
library of include files at program_name.plb or
pathname.plb.

-std Issue warning messages when nonstandard language elements
are encountered.

* -nstd Suppress warning messages for nonstandard elements.

-subchk Generate extra subscript checking code in the executable object
file. This code signals an error if a subscript is outside the
declared range for the array.

* -nsubchk Suppress subscript checking.

-version Display version number of compiler. Note that you do not
include a filename when you use this option. The following
command line shows the usage of this option: pas -version

* -warn Display warning messages.

-nwarn Suppress warning messages.

* -xrs Save registers across a call to an external procedure or function.

-nxrs Do not assume that calls to external routines have saved the
registers.

* denotes a default option.

6-8 Program Development

6.4.1 -ac and -pic: Memory Addressing

The -ae option is the default on MC680xO systems. On Series 10000 systems, -pie is the
default, and -ae is an invalid option.

If you use the -ae option, Domain Pascal uses absolute code to compile your program.
This means that the compiler sets the load address for your data at compile time. As a
result, your program runs faster.

If you use the -pie option, then the compiler generates PIC (Position Independent Code).
This means that the compiler uses relative addressing and that the addresses are set at run
time, rather than at compile time. As a result, your program may be less efficient to run
than if you use the default -ae option.

Use the -pie option for compiling library files that you load with the -inlib option. Since
these files are used by many different programs, their addresses must be set at run time.
You should also use -pie for extensible streams and GPIO drivers.

6.4.2 -alnchk: Displaying Messages about Alignment

The -alnehk option is always set for the compiler variants that generate Series 10000
code.

When you use the -alnehk option, the compiler displays messages telling you whether your
data is naturally aligned. Naturally aligned data increases efficiency at least slightly on any
workstation, but the increase in efficiency is very significant on Series 10000 workstations.

See the "Internal Representation of Unpacked Records" and "Alignment-Extension" sec­
tions of Chapter 3 for more details about alignment.

6.4.3 -b and -nb: Binary Output

The -b option is the default.

If you use the -b option, and if your source code compiles with no errors, Domain Pascal
creates an object file with the source pathname and the . bin suffix. If you specify a path­
name as an argument to -b, then Domain Pascal creates an object file at pathname.bin.

If you use the -nb option, Domain Pascal suppresses creating an object file. Conse­
quently, compilation is faster than if you had used the -b option. Therefore, -nb can be
useful when you want to check your source code for grammatical errors, but you don't
want to execute it.

Program Development 6-9

I

I

Given that error-free Domain Pascal source code is stored in file test. pas, here are some
sample command lines:

$ pas test
{Domain Pascal creates test. bin}

% pas test -b
{Domain Pascal creates test. bin}

$ pas test -b jest
{Domain Pascal creates jest. bin}

$ pas test -b jest. bin
{Domain Pascal creates jest. bin}

% pas test -nb
{Domain Pascal doesn't create an object file}

6.4.4 -bounds_violation and -no_bounds_violation: Array Bounds Checking

The -bounds_violation option is the default.

If you use the -bounds_violation option, you are permitted to reference an element be­
yond the bounds of an array. For example, if you declared an array as:

a : ARRAY [0 .. 15] OF integer32;

you could assign a value to a[16]. However, you may destroy the values stored in other
variables by writing beyond the bounds of an array.

If you use the -no_bounds_violation option, you are not permitted to reference an ele­
ment beyond the bounds of an array. This option provides better optimization than the
default.

If the following example is compiled with the -bounds_violation option, it will print the
value 10. If it is compiled with -no_bounds_ violation, it will print 0, but the program will
be better optimized.

6-10 Program Development

PROGRAM bounds_violation;
TYPE

RECORD boundless
a
i

END;

ARRAY [0 .. 9] OF INTEGER32;
: integer32;

VAR
b boundless;
j integer;

BEGIN

END.

b.i := 0;
FOR j : = 0 TO 10 DO

b.a[j] := j;
writeln(b. i);

6.4.5 -comchk and -ncomchk: Comment Checking

The -ncomchk option is the default.

If you compile with -ncomchk, the compiler does not check to see if you've balanced your
comment delimiters. Consequently, if you forget to close an open comment, the compiler
will probably misinterpret a piece of code as part of a comment. If you compile with the
-ncomchk option, you get the default results.

If you compile with the -comchk option, the compiler checks to see that comment pairs
are balanced; that is, that there are no extra left comment delimiters before a right com­
ment delimiter. The left comment delimiters are {, (*, and "; the right comment delimit­
ers are }, *), and". If you compile with -comchk, the compiler returns a warning for
every additional left comment delimiter.

For example, the following fragment produces weird results because of an unclosed com­
ment:

{This comment should be closed, but I forgot to do it!

x := 0; {We need this statement.}

However, if you compile with -comchk, the compiler returns the following warning mes­
sage:

Warning: Unbalanced comment; another comment start found
before end.

Note that -comchk causes the compiler to look only for the same kind of left comment
delimiter. For example, if you start the comment with (*, the compiler does not flag any
extra left brace { that occurs before the next *).

Program Development 6-11

6.4.6 ~compress and -ncompress: Object File Storage

The -compress option is the default.

The -compress option stores object file data in compressed form. The -ncompress option
stores the data in uncompressed form. Uncompressed data is an exact image of the data
as it will be loaded into memory. Compressed data contains instructions to the loader that
describe how to load the data into memory.

For example, consider an array of 100 bytes, all initialized to O. In uncompressed form,
this array occupies 100 bytes in the object file. In compressed form, it occupies only
enough space for a single .rwdi instruction: load 100 bytes with value O. (.rwdi stands
for "read-write data initialization.")

You may find the -ncompress option especially useful if you are linking modules with un­
compressed data to modules with compressed data. In this case, the linker will expand the
compressed data. The linker output file then contains the uncompressed data from the
two modules and, in addition, the .rwdi instructions from the compressed module, creating
an output file that is larger than if both modules had stored the data in uncompressed
form.

6.4.7 -cond and -ncond: Conditional Compilation

The -ncond option is the default.

The -cond option invokes conditional compilation. If you compile with -cond, Domain
Pascal compiles the lines of source code marked with the %debug directive. (Refer to the
"Compiler Directives" listing in Chapter 4 for details on %debug.)

If you compile with -ncond, Domain Pascal treats the lines of source code marked with
%debug as comments.

You can simulate the action of this switch with the -config compiler option. For new pro­
gram development, you should use the -con fig syntax, since the -cond option is consid­
ered obsolete.

6.4.8 -config: Conditional Processing

Use the -config option to set conditional variables to true. (Refer to the "Compiler Direc­
tives" listing of Chapter 4 for details on the conditional variables.)

You declare these conditional variables with the %var compiler directive. By default, their
value is false. You can set their value to true with the %enable directive (described in the
"Compiler Directives" listing) or with the -config option. The format of the -config op­
tion is

-config var1 [... varN]

where var must be a conditional variable declared with %var.

6-12 Program Development

For example, consider the program shown in Figure 6-2. The program is available online
and is named config_example.

{**}
PROGRAM config_example;

{ You can use this program to experiment with the }
{ -CONFIG compiler option. }

VAR
x, y, Z integer16 .- 0;

BEGIN
writeln('The start of the program.');

%VAR first, second, third

%IF first %THEN
x := 5;
writeln(x,y,z);

%ENDIF

%IF second %THEN
y := 10;
writeln(x,y,z);

%ENDIF

%IF third %THEN
Z := 15;
writeln(x,y,z);

%ENDIF

writeln('The end of the program');
END.

{**}

Figure 6-2. A Program Illustrating Conditional Variables: config_example

Program Development 6-13

I

I

First, notice what happens when you compile without -config.

$ pas config_example
No errors, no warnings, Pascal Rev n.nn

$ config_example. bin·
The start of the program.
The end of the program

Now, use the -config option to set conditional variables first and third to true. Here's
what happens:

$ pas config_example -config first third
No errors, no warnings, Pascal Rev n.nn

$ config_example. bin
The start of the program.
500
5 o 15

The end of the program

To simulate the action of the -cond compiler switch, enclose the section of code you want
conditionally compiled in an %if config_variable %then structure. Then use -config to set
con fig_variable to true when you want to compile that section of code.

6.4.9 -cpu: Target Workstation Selection

The -cpu mathlib_srl0 option is the default if you are using a compiler variant that gen­
erates MC680xO code. The -cpu a88k option is the default if you are using a compiler
variant that generates Series 10000 code. For information about compiler variants, see
Section 6.2.

Use the -cpu option to select the target workstations that the compiled program can run
on. If you choose an appropriate target workstation, your program may run faster; how­
ever, if you choose an inappropriate target workstation, the run-time system will issue an
error message telling you that the program cannot execute on this workstation. The format
for the -cpu option is

-cpu id

You select the code generation mode through the argument that you specify immediately
after -cpu. Table 6-3 shows the possible arguments and the code generation mode that
each argument selects. For example, to compile prog. pas with the mathchip argument,
use the following command line:

pas prog. pas -cpu mathchip

The advantage of the processor-specific code generation modes is that the compiler gener­
ates code optimized for that particular processor, which makes the programs so compiled
run faster. The advantage is seen mostly in programs that make frequent use of floating­
point operations. Programs that make heavy use of multiplication and division with 32-bit
integers may also show significant improvement. To find out how to obtain the best
floating-point performance on the new Domain MC68040-based workstations, refer to
Appendix F.

6-14 Program Development

The -cpu mathchip option generates the best possible code for the following Apollo work­
stations, each of which has an MC68020 or MC68030 microprocessor and an MC68881 or
MC68882 floating-point coprocessor:

HP Apollo 9000 Series 400 Model 400dl
HP Apollo 9000 Series 400 Model 400s
HP Apollo 9000 Series 400 Model 400t
DN4500
DN4000
DN3500
DN3000
DN2500
DN580
DN570
DN560
DN330
DSP90

The mathlib_srl0 and any arguments allow your code to run on a wider variety of plat­
forms with some loss of performance. The default option for MC680xO-based worksta­
tions, -cpu mathlib_srl0, generates code that runs very well on all of the above worksta­
tions and on MC68040-based workstations. This option is the default if you are using a
compiler variant that generates MC680xO code.

Note that there are many possible arguments to -cpu; however, many of them generate
identical code. For example, -cpu mathchip produces exactly the same code as -cpu
570, -cpu 580, and -cpu 3000.

Program Development 6-15

I

Table 6-3. Arguments to the -cpu Option

Argument What the Argument Causes the Compiler To Do

* mathlib_srlO Generates code for workstations with an MC68040 microprocessor, or with an
MC68020 or MC68030 microprocessor and an MC68881 or MC68882
floating-point coprocessor. Code compiled with this argument runs on
SR10.0 and later versions of Domain/OS. The -cpu mathlib_srlO option is
the default if you are using a compiler variant that generates MC680xO code.

* a88k Generates code for a Series 10000 workstation. The -cpu a88k option is the
default if you are using a compiler variant that generates Series 10000 code.

mathlib Produces optimal code for workstations with an MC68040 microprocessor
(including the HP Apollo 9000 Series 400 Model 425t and 433s). Also gen-
erates code for workstations with an MC68020 or MC68030 microprocessor
and an MC68881 or MC68882 floating-point coprocessor. Code compiled
with this argument runs only on SR10.3 and later versions of Domain/OS.
Use mathlib_sr10 if your code must also run on SR10.0, SR10.1, or SR10.2.

mathchip Generates code for workstations with an MC68020 or MC68030 microproces-
3000 sor and an MC68881 or MC68882 floating-point coprocessor. These seven
580 arguments generate identical code. We recommend that you use the math-
570 chip argument; the other six arguments will become obsolete at a future com-
560 piler release. (Code compiled with mathchip will also run on the MC68040,
330 but not very well.)
90

160 Generates code for a DSP160, DN460, or DN660 workstation. These three
460 arguments generate identical code.
660

Cpal Generates code for DN3000, DN4000, or DN4500 workstations with an FPA1
floating-point accelerator unit.

Cpx Generates code for DN5xx workstations with an FPX floating-point
accelerator unit.

peb Generates code for workstations with a Performance Enhancement Board
(PEB) (includes the DN100, DN320, DN400, and DN600, when equipped
with an optional PEB).

any Generates Series 10000 code if you are using a compiler variant that
generates Series 10000 code; generates generic MC680xO code if you are
using a compiler variant that generates MC680xO code.

m68k Generates code for any MC680xO-based workstation (same as any on all
workstations other than the Series 10000).

* denotes a default option

6-16 Program Development

Table 6-4 shows the relative performance of the MC680xO code generated with different
arguments to the -cpu option.

Table 6-4. Relative Performance with Different -cpu Arguments

Machine Type

160, MC68020/030,
Argument 100, 400 PEB 460, 660 FPX FPA1 68881182 MC68040

-- -- -- fair * fair good

mathlib -- -- -- fair * good best

mathchip -- -- -- fair * best fair

peb -- best -- -- -- -- --

160, 460, 660 -- -- best -- -- -- --

fpx

fpa1

any

Legend:

*

-- -- -- best -- -- --

-- -- -- -- best -- --

best fair poor poor poor poor fair

Code generated with this argument will not run on this machine type.
The compiler selects instructions that do not use the FPA 1 accelerator.
In this case, the code runs exactly the same as code generated for an
MC68020-based or MC68030-based machine.

best, good, fair, poor
These four terms are relative; they compare performance between
different -cpu arguments on one machine, not between machines.
For example, code that is fair for an MC68040-based machine runs
faster than the best code on an MC6820-based or MC68030-based
machine.

6.4.9.1 Choosing an Appropriate -cpu Argument: The cpuhelp Utility

The cpuhelp utility provides quick online information about which -cpu argument is appro­
priate for a particular machine or about which machines a particular -cpu argument will
work on. For information about this utility, type help cpuhelp in an Aegis environment or
man cpu help in a UNIX environment.

Program Development 6-17

6.4.10 -db, -ndb, -dba, -dbs: Debugger Preparation

The -db option is the default.

Use these switches to prepare the compiled file for debugging by the Domain Distributed
Debugging Environment. Domain Pascal stores the debugger preparation information
within the executable object file, so in general, the more debugger information you request,
the longer your executable object file.

If you use the -ndb option, the compiler puts no debugger preparation information into
the • bin file. If you try to debug such a . bin file, the system reports the following error
message:

?(debug) The target program has no debugging information.

If you use the -db option, the compiler puts minimal debugger preparation information
into the .bin file. This preparation is enough to enter the debugger and set breakpoints,
but not enough to access symbols (e.g., variables and constants).

If you use the -dbs option, the compiler puts full debugger preparation information into
the .bin file. This preparation allows you to set breakpoints and access symbols. When
you use the -dbs option, the compiler sets the -opt option. (You can override this with
the -nopt or -opt 0 option.)

The -dba option is identical to the -dbs option except that when you use the -dba op­
tion, the compiler sets the -nopt option (even if you specify -opt).

NOTE: The -dba option overrides anything you specify for the -opt op­
tion. When you specify -dba, the -opt option is set to -opt 0,
regardless of what you specified for -opt on the command line for
the compilation. See the "-opt: Optimized Code" section of this
chapter for more details about the optimizations that are set with
-dba.

For more information on these four options, see the Domain Distributed Debugging
Environment Reference.

6.4.11 -exp and -nexp: Expanded Listing File

The -nexp option is the default.

If you compile with the -exp option, the compiler generates an expanded listing file. This
listing file contains a representation of the generated assembly language code interleaved
with the source code.

If you compile with the -nexp option, the compiler does not generate a listing file (unless
you use the -map or -I options).

6-18 Program Development

6.4.12 -frnd and -nfrnd: Floating-Point Rounding

The -nCrnd option is the default.

If you compile with -nCrnd, the compiler generates code that computes floating-point ex­
pressions in at least the precision specified by the program. If the compiler detects an op­
portunity to optimize execution by doing the arithmetic in greater precision, it does so.

The -Crnd option causes floating-point numbers to be rounded to the programmer­
specified precision (either 32-bit single precision or 64-bit double precision) at key points
in the execution of the. program, so that programs executing on Domain systems will give
results similar to those obtained on machines that use different floating-point representa­
tion. Programs compiled with -Crnd execute more slowly and with less floating-point pre­
cision (that is, less mathematical exactness) than those compiled with -nCrnd.

With -nCrnd, floating-point operands may be kept in registers that support more accuracy
than memory does. Consequently, when a register operand is compared with a memory
operand, the result may not be what is expected. This is particularly true of equality com­
parisons. Consider the following Pascal program:

PROGRAM main;

VAR
x : double;

FUNCTION fetch : double;
BEGIN

fetch .- 1.1;
END;

BEGIN

END.

x := fetch;
IF (x - 0.1) = 1.0 THEN

wri teln (' Pass')
ELSE

writeln('Fail');

If you compile with -nCrnd, this program fails because the values 0.1 and 1.1 cannot be
represented exactly in base 2 floating-point. Thus, the quantity (x - 0.1) can only be ap­
proximated. This value is calculated in an 80-bit register, and then a compare is gener­
ated to see if this value is exactly equal to 1.0, which is stored in memory. Since the reg­
ister has more precision than memory has, the comparison fails.

If you compile with -Crnd. the 80-bit register is stored (and rounded) in a double­
precision 64-bit temporary memory location. Now when it is compared with, 1.0, which is
also stored in memory. the two values compare as equal.

Program Development 6-19

Floating-point calculations on Apollo workstations run considerably faster if you do not use
the -frnd option. Moreover, using -frnd makes floating-point calculations less precise. If
you find that your results with -frnd differ significantly from your results without it, your
code is exposing the inherent imprecision of floating-point arithmetic. In this case, you
should investigate whether you can rewrite your program so that it produces the same re­
sults with and without -frnd. Try to eliminate practices like the following:

• Equality comparisons of floating-point values.

• Subtraction of two nearly equal floating-point values. The imprecision in the low
bits of the two numbers can dominate the value of the difference.

• Expressions that evaluate a function near a singularity. For example:

tan(pi/2.0 - small_delta)
sin(l/small_epsilon)

NOTE: The -frod option gives a precision that is closer to that required
by the IEEE-7S 4 floating-point standard than that provided by
-nfrod. However, using -frod does not bring a program into
compliance with the IEEE standard. If you want exact confor­
mance to the IEEE standard, use the DomainlOS system call
fpp_$set_rouoding_mode. This routine puts the floating-point
processor in a round-every-computation mode, which gives ex­
act IEEE-7S4 conformance but, like -frod, reduces precision
and increases execution time.

6.4.13 -idir: Search Alternate Directories for Include Files

The -idir option specifies the directories in which the compiler should search for include
files if you specify such files using relative, rather than absolute, pathnames. Absolute path­
names begin with a slash (I), double slash (II), tilde C), or period (.).

Without the -idir option, Domain Pascal searches for include files in the current working
directory. For example, if your working directory is Ilnord/minn and your program in­
cludes this directive

%INCLUDE 'mytypes.ins.pas'

Domain Pascal searches for that relative pathname at Ilnord/minn/mytypes. ins. pas. How­
ever, when you use -idir, the compiler first searches for the file in your working directory,
and if it doesn't find the file, it looks in the directories you list as -idir arguments. When
it finds the include file, the search ends. This capability is useful if you have include files
stored on multiple nodes or in multiple directories on your node.

For example, consider the following compile command line:

$ pas test -idir lIouest/hawaii

6-20 Program Development

This command line causes the compiler to search for mytypes.ins.pas at lIouest/hawaii/
mytypes.ins.pas if it can't find IInord/minn/mytypes.ins.pas.

You can put up to 63 pathnames following an -idir option. Separate each pathname with a
space.

6.4.14 -imap and -nimap: Generate Symbol Table Maps for Include Files

The -nimap option is the default.

The -imap option tells the compiler to generate map files for files that are %included by
the files that you specify on the command line. The generated map files are the same as
those generated when you use the -map option. -imap implies -map.

See Section 6.4.20 for further details about the -map option and about the symbol table
maps that are generated.

6.4.15 -indexl and -nindexl: Array Reference Index

The -nindexl option is the default.

The -indexl option disables some optimizations and forces the compiler to use 32-bit in­
dexing in subscript calculations. The -nindexl option causes the compiler to use the
source code's array dimension information to determine whether to use 16-bit or 32-bit
indexing.

6.4.16 -info nand -ninfo: Information Messages

The -info 2 option is the default.

The -info option allows you to tell the compiler which, if any, types of information mes­
sages to display. The purpose of information messages is to alert you to ways in which
you could improve the efficiency of your code. You specify the types of message by means
of an information message level. The syntax for the -info option is:

-info n

where n is an integer between 0 and 4 that represents the information message level.

-ninfo is equivalent to -info O.

The compiler displays messages for all levels up to and including the level you specify. In
other words, if you specify -info 3, the compiler will display all the messages specified by
-info 3 plus all the messages specified by -info 1 and -info 2.

Program Development 6-21

Domain Pascal provides the following information message levels:

-info 0

-info 1

-info 2

-info 3

-info 4

This level is equivalent to -ninfo. At this level, the compiler displays no
informational messages.

Messages at this level are about the size and alignment of variables and types.

Messages at this level describe optimizations performed by the compiler. All
-info 2 messages were warning messages prior to SR 1 O.

If you specify this level, the compiler issues a message in addition to level 2
messages only if all of the following conditions occur:

• You do not specify the alignment for a variable.

• The variable is not naturally aligned.

• The compiler loads or stores from the variable.

Use this message level to discover variables for which you could specify the
alignment as natural alignment and thereby make your program run more
efficiently.

If you specify this level, you get the same message as you get with -info 3.
However, you get this message even if you do not specify natural alignment for
a variable.

Use this level to discover any variables for which you may want to change
the alignment.

Level 4 messages also indicate if a routine has been expanded inUne. For
example, if you compile a program containing a function named test_pos with
-info 4, you get the following message at compile time:

******** Line 38: [Information 266] routine expanded INLINE
at call site: "test_pos".

This message indicates that the compiler substituted an expansion of test_pos
at line 38 of your source file, where your source code contained a function
call to the test_pos function. For more information about inline expansion,
see the discussion of the %begin_inline, %end_inline, %begin_noinline, and
%end_noinline directives in the "Compiler Directives" listing of Chapter 4.

Note that using the -info option does not affect the display of warning and error messages.
See Chapter 9 for more details about information, warning, and error messages.

6.4.17 -inlib: Library Files

Use -inlib to tell the compiler to load library files at run time. The -inlib option makes
code available to an executing program without actually binding the code into the output
object file. If your program needs to access code in a library file that has not been speci­
fied with the -inlib option, your program will not work as you intended.

6-22 Program Development

The syntax for the -inlib option is:

-inlib pathname

where pathname specifies the library file. The file in pathname must be a binary file cre­
ated with the -pic option. (For information about -pic, see Section 6.4.1.)

When you use the -inlib option,

1. The compiler puts the pathname of the library in the binary file.

2. The compiler uses global symbols in the library to identify externals which are not
absolute data or absolute procedure references.

3. At run time, the loader loads the library file, and the externals identified in Step
2 are dynamically linked.

6.4.18 -iso and -niso: Standard Pascal

The -niso option is the default.

Domain Pascal implements a few features differently than ISO standard Pascal. The -iso
switch lets you tell the compiler to use standard Pascal rules for some of these features. It
also tells the compiler to turn on the -std switch, which issues error messages for nonstan­
dard language elements.

The -iso option tells the compiler to use ISO rules with the mod operator. Domain Pascal
implements mod using the Jensen and Wirth semantics; see the mod listing in Chapter 4
for details.

In addition, if you compile with -iso, comment delimiters no longer are required to match
up, which means that the following becomes valid:

{This comment starts with one type of delimiter and ends with another.*)

Finally, if you use the -iso option, the compiler flags as an error a goto statement that
jumps into an if/then/else statement.

For example, the following is incorrect under the -iso switch:

label
bad_jump;

if num > 0 then
{statement}

else
bad_jump:

{next statement};

goto bad_jump; {WRONG}

The preceding structure is permitted under Domain Pascal.

Program Development 6-23

6.4.19 -I and -nl: Listing Files

The -nl option is the default.

The -I option creates a listing file. The listing file contains the following:

• The source code, including line numbers. Note that line numbers start at 1 and
move up by 1 (even if there is no code at a particular line in the source code).
Further note that lines in an include file are numbered separately.

• Compilation statistics.

• A section summary.

• A count of error messages produced during the compilation.

The format for the -I option is

-I path name

If you specify a pathname following -I, the compiler creates the listing file at pathname.lst.
If you omit a pathname, the compiler creates the listing file with the same name as the
source file. If the source file name includes the .pas suffix, .1st replaces it. If the source
file name does not include .pas, .Ist is appended to the end of the name.

The -nl option suppresses the creation of the listing file. (See also -map and -exp.)

6.4.20 -map and -nmap: Symbol Table Map

The -nmap option is the default.

If you use the -map option, Domain Pascal creates a map file. A map file contains every­
thing in the listing file (-I) plus a special symbolic map. The special symbolic map consists
of two sections.

The first section describes all the routines in the compiled file. For example, here is a
sample first section:

001 EXAMPLE Program(Proc = 00005A,Ecb = 000030,Stack Size = 0)
002 DO_NOTHING Procedure(Proc = OOOOOO,Ecb = 000020,Stack Size = 8)
003 DO_SOMETHING Function(Proc = 00003E,Ecb = OOOOOC,Stack Size = 8)

The preceding data tells you that the compiled file contains a main program (called exam­
ple), a procedure (called do_nothing), and a function (called do_something). There are
three pieces of data inside each pair of parentheses. The first piece tells you the start ad­
dress in hexadecimal bytes from the start of a section. The second piece is the offset (in
bytes) of the routine entry point. The third piece is the size (in hexadecimal bytes) of the
stack. The second and third pieces of data probably are of interest only to systems pro­
grammers.

6-24 Program Development

For example, in the sample first section, the starting address of the main program was off­
set 16#SA bytes from the beginning of the .text section. The offset relative to the begin­
ning of the .data section of the main program's routine entry point is 16#30 bytes. Its
stack size is 0 bytes.

The second section lists all the variables, types, and constants in the compiled program.
For example, here is a sample second section:

002 A
002 A2
001 BI
001 BILBOA
001 Q

001 R5
001 S
001 X
001 y

003 Z

Var(-000008/S): CHAR
Var(-000006/S): CHAR
Type= ARRAY[1 .. 2] OF INTEGER16
Const='The rain'
Var(+000002/MICROS): CHAR
Var(+000004/MICROS): DOUBLE
Var(+OOOOOC/MICROS): BI
Var(/MICROS): INTEGER16
Yare/D): INTEGER16
Var(+000010/S): INTEGER16

The map tells you, for example, that RS is a Var (variable) that is stored +000004 bytes
from the beginning of the MICROS section. It also tells you that RS has the data type
double. Also, note that ID means the .data section, and IS means the stack.

If you specify -nmap, Domain Pascal does not create the special symbol map.

6.4.21 -msgs and -nmsgs: Messages

The -msgs option is the default.

If you use the -msgs option, the compiler produces a final compilation report having the
following format:

xx errors, yy warnings, zz info msgs, Pascal compiler variant Rev n.n

where xx, yy, and zz are either "no" or a number, n.n is the version number, and variant
is one of the following:

68K
PRISM
68K=>PRISM
PRISM=>68K

If you use -nmsgs, the compiler suppresses this final report.

6.4.22 -natural and -nnatural: Setting the Environment to Natural Alignment

The -nnatural option is the default.

The -natural option tells the compiler to use natural alignment for laying out data struc­
tures that do not have alignment attributes in their declarations and that are not controlled
by ·compiler directives.

Program Development 6-25

The hardware is designed to transfer data most efficiently if the data is naturally aligned.
Thus, if your data is naturally aligned, you can increase the processing speed of your pro­
gram, even though you may sacrifice some efficiency in memory usage.

NOTE: -natural has the same effect as the %natural_alignment compiler
directive.

See the "Internal Representation of Unpacked Records" and the" Alignment-Extension"
sections of Chapter 3 for more details about natural alignment.

6.4.23 -nclines: COFF Line Number Tables

By default, the compiler variants that generate code for the MC680xO workstations gener­
ate COFF line number tables whenever you compile using the -dba or -dbs option. How­
ever, the Domain Distributed Debugging Environment does not require these tables, nor
does the Domain traceback (tb) tool. You can use the -nclines option to tell the compil­
er to suppress the generation of these tables.

Since these tables might require a lot of disk space, you should use the -nclines option if
you do not need the COFF line number tables and you wish to save space.

NOTE: This option has no effect on the compiler variants that generate
code for the Series 10000 workstations.

6.4.24 -opt: Optimized Code

The -opt 3 option is the default.

The -opt option allows you to specify the kinds of optimization performed on your source
program, by means of an optimization level.

The syntax for the -opt option is:

-opt n

where n is an integer between 0 and 4 that represents the optimization level. If you specify
-opt and omit the optimization level, the level defaults to -opt 3. If you omit the -opt
option completely, the default option, -opt 3, is assumed. The obsolete option -nopt is
equivalent to -opt O.

At -opt 0 the compiler performs very few optimizations. At each higher optimization
level, the compiler performs more optimizations. Each higher level of optimization in­
cludes all optimizations performed at the lower levels of optimization.

NOTE: Because the compiler does increasingly more work at successive
levels of optimization, it takes longer to compile your program at
each successive optimization level. If you are just beginning to
develop your program, and you are compiling mainly to find syn­
tax errors, you may want to compile using a low optimization level
to reduce the compilation time. When you are ready to test the
execution of your program, you can compile with a higher optimi­
zation level to take advantage of all the optimizations.

6-26 Program Development

The following is a brief description of the optimizations performed at each optimization
level. Note that we include -dba in the list of optimization levels because it implies
-opt O. For a more detailed discussion of compiler optimization techniques, consult a gen­
eral compiler textbook.

• -dba represents the lowest possible optimization level. At this level, the -opt
option is -opt O.

The -dba option tells the compiler to store variables in memory after every state­
ment instead of allowing them to remain in registers. Even with the -dba option
the compiler still does some optimizations. Specifically, the compiler

Rearranges expressions to minimize the number of registers needed to compute
them

Generates faster short range branch instructions in place of long branches where
possible

Computes constant expressions that appear in the source code rather than generat­
ing code to compute them

Computes multiple occurrences of the same expression within a statement only one
time rather than many times

Note that the -dba option overrides anything you specify for the -opt option. In
other words, when you specify -dba, the -opt· option is set to -opt 0, regardless
of what you specify for -opt on the command line.

Furthermore, -dba represents a level of optimization even lower than -opt O. If
you want your code to be optimized, and you want to use the debugger on your
program, use the -dbs option rather than -dba. See the section on -dba and
-dbs for details about using these options.

• -opt 0 performs the optimizations listed above. In addition, the compiler

Permits values to remain in registers across statements (where it is legal to do so,
and if -dba is not also set)

Merges identical sequences of instructions in generated code by eliminating all but
one of them and branching just to that one sequence

• -opt 1 performs the following additional optimizations:

Eliminates some global common sUbexpressions. A common subexpression is an
expression that appears two or more times in the program, with no intervening as­
signments to any component of the expression. In such cases, the compiler com­
putes the value of the expression only one time and uses the resulting value to re­
place other occurrences of the expression.

Eliminates dead code. Dead code is code that cannot be executed because there is
no execution path of the program that leads to the code.

Program Development 6-27

Transforms integer multiplication by a constant into shift and add instructions
rather than using direct multiply (where appropriate)

Performs simple transformations for speed

Merges assignment statements where possible

• -opt 2 performs the following additional optimizations:

Substitutes constants for reaching definitions (see details below)

When you make an assignment to a variable or use the variable as a parameter in a
function call, the compiler produces a definition of the variable. If there are no
other definitions between the original definition and the use of the variable, then a
particular definition of a variable is said to reach later uses of the variable. If the
definition is an assignment of a constant to the variable, then the compiler can re­
place uses of the variable that the definition reaches with the constant. As the com­
piler makes these substitutions it transforms the expressions into constant expres­
sions that can be evaluated during compilation. Thus there is no need to generate
code to compute the value of the expression.

For example, in the statements,

a .- 3
c .- 2 * a;

there are no other definitions of the variable 8 between the original assignment and
the use of 8 in the expression 2 * 8. So the compiler can substitute the value 3 in
the expression 2 * 8. The expression then becomes 2 * 3, which is computed during
compilation. As a result, the program does not perform a multiply when it executes.
Instead, it merely assigns the already computed value 6 to c.

• -opt 3 is the default optimization level.

At this level, the compiler performs the following additional optimizations:

Redundant assignment statement elimination

Redundant assignment elimination performed at this optimization level may result
in warning messages such as the following:

******** Line 14: [Warning 279] Value assigned to SMALL_RANGE
is never used; assignment is eliminated by optimizer.

Consider the following example:

program B;

var
it j : integer;

begin
read In (itj);
if (i = 0) then

j := 3;
writeln (i);

end.

6-28 Program Development

There are no uses of the variable J after the assignment J : = 3. Since the value as­
signed to J is not used, the compiler can eliminate the assignment completely with­
out changing the result computed in the program. In fact, in this particular pro­
gram, once the assignment is eliminated, the if portion of the statement isn't
needed either, and can be eliminated. If we change the example so that j is used af­
ter the assignment, the assignment is no longer eliminated:

program B;

var
i, j : integer;

begin
readln (i,j);
if (i = 0) then

j := 3;

writeln
end.

i, j);

Global register allocation

Global register allocation allows local variables to have their values placed in ma­
chine registers for faster access. In many cases, all definitions and uses of a local
variable may occur in a register, and the compiler never uses or updates the copy
of the variable in the computer's main memory. Keeping variables in registers
makes your program execute faster.

Instruction reordering

Instruction reordering changes the order in which instructions are executed in or­
der to take advantage of possible overlaps in some instruction sequences. For ex­
ample, some integer instructions can execute at the same time as some floating­
point instructions, as long as the integer instructions do not depend upon the result
computed by the floating-point instructions.

Removal of invariant expressions from loops

A loop invariant expression is an expression whose value does not change during
the execution of a loop. When the compiler computes invariant expressions out­
side a loop, it does so only once. Thus the loop executes faster. For example:

for i := 1 to 10 do
begin

j := k * m;
j :=i+j;

end;

Program Development 6-29

The expression k • m is invariant in the above example. The compiler can safely
transform this loop as follows:

temp := k • m;
for i := 1 to 10 do

begin
j := temp;
j := i + j;

end;

After the invariant expression is removed from the loop, the example does only one
multiply instead of 10 to make the assignment to j.

Strength reduction

Strength reduction is an optimization performed on expressions in loops. The pur­
pose of strength reduction is to reduce execution time in the loop by substituting
equivalent faster operations for slower more expensive ones.

For example, consider the following loop:

for i .- 1 to 10 do
j .- i * 5;

In the loop above, i is a counter or induction variable; its value is incremented by a
constant each trip through the loop. The compiler can replace multiplication ex­
pressions involving induction variables with cheaper addition operations, and get
faster loop execution. The loop above might be changed to look like this:

T$OOOOl:= 1 * 5;
for i:= 1 to 10 do

begin

{ This operation folds to just 5 }

j := T$OOOOl
T$OOOOl:= T$OOOOl + 5

end;

Strength reduction has replaced the multiplication with an equivalent addition. No­
tice that a new variable has been introduced, T$OOOO 1. This variable is a strength
reduction temporary variable. The optimizer uses this variable to take the place
of i, whose value may be needed at a later point in the program. However, if i is not
used in the loop in expressions that cannot be strength reduced, and it is not used
on a later execution path from the loop, the optimizer may eliminate all assign­
ments to i. Since the assignment elimination is aside effect of strength reduction,
the compiler does not issue a warning message when it does this. As a result, you
may find it difficult to examine induction variables when you are debugging your
program. However, the optimizer eliminates the increment and store of the induc­
tion variable in the loop. Of course, you could change your source code yourself,
and achieve the same effect the optimizer produces.

6-30 Program Development

More frequently, strength reduction helps to eliminate hidden multiplication op­
erations in array accesses. For example, whenever your code refers to an element
in an array, say A [i), it must calculate an address in order to fetch the correct ele­
ment of A. The formula for this address calculation is as follows:

(base address of A) + (i - lower bound) • (element size of A)

Notice that there is a multiply that will appear in the generated code, even though
no explicit multiply appears in your source code. Consider the following loop:

for i := 1 to 10 do
A[i] := 0.0;

Even though there are no explicit multiplication operations in the source code, the
array reference introduces a multiplication operation, and an opportunity for
strength reduction, since the array index i is an induction variable. The optimizer
can transform this loop as follows:

T$00001 := (base address of A) + (1 - 1) * (4)
for i := 1 to 10 do

begin
T$00001 A := 0.0;
T$00001 := T$00001 + 4;

end;

In this example, T$OOOOI A means an indirect reference through the variable
T$OOOOI, which contains the address of the selected array element. Notice that
strength reduction has succeeded in eliminating the multiplication inside the loop
for the array reference, and has also moved the addition of the base address of A to
a point outside the loop. In some cases, the increment of T$OOOOI may be accom­
plished at the same time the array element is stored, by means of auto-increment
addressing modes in the machine instructions. Again, all references to i may be
eliminated if it is legal to do so in the context of the surrounding program.

Live analysis on local variables.

When the compiler performs live analysis of local variables it determines the areas
of a routine where a variable is actively used. For example,

j := k;
if (i = 0) then

begin
i '-.-
j .-

end
else

begin

2' ,
3 * j;

k:= i * 4;
writeln(k);

end;

Program Development 6-31

I

In this example, j is not used in the else clause. Furthermore, j is not used on any
execution path from the else clause to the end of the program, nor on execution
paths from the else to other parts of the routine. Therefore, the compiler considers
j to be dead from the statement following the else to the end of the routine.

Within the then clause, there is a use of j. Therefore, the compiler considers j to be
live within the then clause. If there were other uses of j that could be reached from
the then clause, j would be considered live along the paths that lead to those uses.

Live analysis is important because it allows the compiler to allocate a local variable
to a machine register for exactly as long as the variable's value is needed. When the
variable becomes dead, the register can be used for other variables or expression
values. In general, referencing a value in a register is faster than referencing a value
in the computer's main memory. Thus if you use registers efficiently, your pro­
grams will run faster.

Extensive searches through each routine for global common subexpressions to
eliminate.

Note that the -opt 1 and -opt 2 levels make only limited searches through the code
for global common subexpressions.

Inline expansion of routines specified by %begin_inline and %end_inline direc­
tives.

Inline expansion means that the compiler will attempt to generate code for the
function everywhere the function is referenced from within the same source file.
Inline expansion may create a larger object file, since the code for the function is
replicated at each call site. However, inline expansion may result in an increase in
execution speed. Usually, good candidates for inline expansion are small functions
that are frequently executed.

If you use -opt 3 in conjunction with the %begin_inline and %end_inline direc­
tives, you can specify exactly which routines are to be expanded inline. These di­
rectives have no effect with -opt 0, -opt 1, or -opt 2. For more information about
these directives, see "Compiler Directives" in Chapter 4.

• -opt 4 performs the following additional optimization:

In addition to performing the same inline expansions as -opt 3, the compiler se­
lects routines for inline expansion whether or not you specify any routine with the
%begin_inline and%end_inline directives. To specify that certain routines are
not to be expanded inline, use the %begin_noinline and %end_noinline direc­
tives, which are described in the "Compiler Directives" listing in Chapter 4.

6.4.24.1 Using the Debugger at Higher Optimization Levels

If you use the debugger to debug a program that you compiled using -opt 3 or -opt 4,
you may be unable to examine the values of some local variables at points in the ~()urce
code where those variables are not actively in use.

6-32 Program Development

This happens because the compiler assigns the values of variables to a machine register
rather than the computer's main memory. The optimizer may decide that the main mem­
ory location for this variable does not need to be updated, because all uses of the variable
in the source program can legally use the value of the variable that is retained in the ma­
chine register. In addition, the optimizer may merge some source statements together, or
eliminate source statements entirely.

Thus, when you are debugging with these optimizations, you may see what appear to be
strange jumps in the control flow of the program. Furthermore, you may be unable to set a
breakpoint at a particular source line because the generated code for that source line has
been optimized away or merged with the code from another source line.

See the Domain Distributed Debugging Environment Reference for more details about the
use of the debugger.

6.4.25 -prasm and -nprasm: Expanded Listing Format

The -prasm option is the default if you are using a compiler variant that generates Series
10000 code and if you are compiling with the -exp option.

The -prasm and -nprasm options give you control over the format of expanded assembler
listings when you use the -exp option. If you use them without the -exp option, they
have no effect.

The -prasm option tells the compiler to use the Series 10000 assembly language format for
the expanded listing it generates. The -nprasm option tells the compiler to use an alter­
nate format for the expanded listing. Most programmers find this format easier to use
when debugging a program.

If you use these options with the compiler variants that generate MC680xO code, they have
no effect.

6.4.26 -slib: Precompilation of Include Files

Because there usually are a number of common tasks most programs must perform,
Domain Pascal programs often contain include files. Frequently used files include
Isys/ins/base.ins.pas and Isys/ins/error.ins.pas. But it would be time-consuming to com­
pile such files every time a program in which they were %included was compiled. The
-slib option allows you to precompile an include file. The %slibrary compiler directive
(described in Chapter 4) allows you to insert that file in your program. Then, the compil­
er knows that the file already has been compiled and doesn't bother to parse it again.

The syntax for -slib is:

-slib pathname

Program Development 6-33

If you specify a pathname following -slib, the· compiler creates the precompiled file at
pathname. plb. When no pathname is present, and the name of the input program file ends
in • pas, -slib replaces that ending with . plb and creates the file at program_name. plb. If
the input filename does not end in .pas, -slib appends .plb to the name.

For example, suppose you want to precompile the file mystuff.ins.pas. This command
pre compiles it and puts the result in mystuff.ins.plb.

$ pas mystuff. ins -slib

The following restrictions apply to the contents of files that are going to be precompiled:

• They can contain only declarations.

• They must not contain routine bodies.

• They must not declare variables that would result in the allocation of storage in
the default data section, . data.

This means the declarations must either put variables into a named section, or
must use the extern variable allocation clause. See Chapter 3 for more informa­
tion about named sections, and Chapter 7 for details on extern.

Conditional compilation directives in the files you slib are executed during precompilation.

If you have several files that you want to combine into a single precompiled library, you
can create a container file with a series of %include directives. For example, to combine
some frequently used include files into the single precompiled library Isys/ins/domain. plb,
you can create a file systemstuff.pas which contains the following:

{ Files we often use together. }
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/vfmt.ins.pas';

Then use -slib as follows to create the precompiled, combined library.

$ pas systemstuff -slib Isys/ins/domain

You can include the new precompiled library in any program. For example:

PROGRAM errortest;
%SLIBRARY'/sys/ins/domain.plb';

BEGIN

END.

6-34 Program Development

6.4.27 -std and -nstd: Nonstandard References

-nstd is the default.

The -std option tells the compiler to compile in the usual way but to issue error messages
for nonstandard language elements (Le, extensions to the ISO standard).

Note that using -std does not otherwise change the way Domain Pascal compiles your pro­
gram. To tell the compiler to use standard Pascal rules for compiling rather than its usual
rules, you should use the -iso option.

The -nstd option suppresses reporting of nonstandard elements.

6.4.28 -subchk and -nsubchk: Subscript Checking

-nsubchk is the default.

If you use -subchk, the compiler generates additional code at every subscript to check that
the subscript is within the declared range of the array. This extra code slows your pro­
gram's execution speed.

If you use -nsubchk, the compiler does not generate this extra code.

6.4.29 -version: Version of Compiler

If you use the -version option, the compiler reports its version number.

NOTE: When you use the -version option, do not include the filename on
the command line. If you do, you will get an error message from
the compiler.

The following command line shows the correct use of the
-version option:

$ pas -version

6.4.30 -warn and -nwarn: Warning Messages

-warn is the default.

If you use -warn, the compiler reports all warning messages.

If you use -nwarn, the compiler suppresses reporting warning messages (though it does
report on the total number of warnings that would have been issued).

Program Development 6-35

We strongly recommend that you avoid using -nwarn. Warnings are issued when the com­
piler believes it knows what the program meant to say, and so thinks it can still generate
the right code. But the compiler isn't always right, and if you use -nwarn, you won't see
the messages that could indicate where the compiler got confused.

6.4.31 -us and -nxrs: Register Saving

-xrs is the default.

This option controls whether the compiler believes that the contents of registers are saved
across a call to an external routine or a call through a procedure-ptr or function-ptr vari­
able. If you use -xrs, the compiler assumes registers are saved, while if you use -nxrs, it
does not assume registers are saved.

In either case, the compiler always saves register contents when it enters a routine and re­
stores those contents to the registers when it exits the routine.

The primary use for this option is when your program contains calls back to subprograms
compiled with pre-SR9.5 compilers. In such a case, you should isolate the portion of your
new code that calls the older subprograms, and separately compile that new code with the
-nxrs option.

6.5 Linking Programs

There are two commands that enable you to link (bind) object modules to form an exe­
cutable image. The Id utility is the standard UNIX link editor with some Domain en­
hancements. The bind command invokes the Id utility but offers a somewhat different
command syntax.

NOTE:

6.5.1 The ld Utility

We support the bind command primarily for backward compati­
bility with scripts written to run on older versions of the Domain
system. We recommend you use the Id command for new pro­
grams.

Use the UNIX link editor, Id, to combine several object modules into one executable pro­
gram. The input object module~ can come from the following sources:

• Libraries created by ar (the UNIX archiver)

• Libraries created by Ibr (the Aegis librarian)

• Object modules created by the Domain/C, Domain Pascal, or Domain FORTRAN
compilers

6-36 Program Development

• Object modules previously created by Id

• Object modules created by bind (the Aegis binder)

The Id utility resolves external references and reports external references it can't resolve.
An external reference is a symbol (variable, constant, or routine) that you refer to in one
object file and define in another. You can also use the UNIX utility nm to perform a
check of resolved and unresolved global symbols.

You can execute the output from Id (if there is a start address) or use it as input for a
further Id run. For syntax details on Id and its options, see the SysV Command Reference
and the BSD Command Reference.

6.5.2 The bind Command

The bind command is similar in function to the Id link editor. Use the binder utility to
combine an object file with other object files to which it refers. The main purpose of the
binder is to resolve external references.

The format for the bind command is as follows:

$ bind pthnml [.. . pthnmN] [optionl [.. . optionN]]

A pthnm must be the pathname of an object file (created by a compiler) or a library file
(created by the librarian). See Section 6.6 for more information about creating library
files.

The bind command line can also contain zero or more binder options, the most important
of which is -b. If you use the -b option, the binder generates an executable object file. If
you forget to use the -b option, the binder won't generate an output object file. Refer to
the Domain/OS Programming Environment Reference manual for a complete discussion of
the binder and its options.

For example, suppose you write a program consisting of three source code
files-test_main.pas, mod1.pas, and mod2.pas. To compile the source code, you issue
the following three commands:

$ pas test_main
$ pas modI
$ pas mod2

The Domain Pascal compiler creates test_main.bin, modI.bin, and mod2.bin. To create
an executable object, bind the three together with a command like the following:

$ bind test_main. bin mod1.bin mod2.bin -b T3

This command creates an executable object file in filename T3.

Program Development 6-37

NOTE: At SRI0 the compiler generates an object file format which is an
extended version of the COFF (Common Object File Format)
standard. The loader retains knowledge of how to load pre­
COFF objects; however, it is not possible to bind pre-COFF and
COFF modules together. Be aware that COFF object files will not
run on pre-SRI0 nodes.

Refer to Domain/OS Programming Environment Reference for a complete discussion of the
binder and its options.

6.6 Archiving and Using Libraries

Use the UNIX archiver, ar, to create and update library files. Once created, a library file
can be used as input to the link editor, Id. As with most linkers, Id will optionally bind
only those modules in a library file that resolve an outstanding external reference. For
syntax details on ar and its options, see the Domain/OS Programming Environment Refer­
ence.

You can also create library files with the Ibr utility, which is detailed in the Domain/OS
Programming Environment Reference.

NOTE: At SRI0, the Ibr utility handles only objects generated by SRI0
compilers, SRI0 linkers (bind or Id) or SRI0 archivers (lbr or
ar). The Ibr utility generates library files in the form of UNIX
archive (ar) files. For compatibility, we provide a version of Ibr
that handles objects created between SR9. 5 and SR9. 7 -the
Ibr2ar command. You can use Ibr2ar to convert pre-SRI0 Ibr
libraries. See the Domain/OS Programming Environment Refer­
ence for details about using Ibr2ar.

In addition to library files, the Domain system also supports user-defined installed libraries,
system-defined installed libraries, system-defined global libraries, and the user-defined
global library. All are detailed in the Domain/OS Programming Environment Reference.

On some operating systems, you must bind language libraries and system libraries with your
own object files. On the Domain system, there is no need to do this as the loader binds
them automatically when you execute the program.

6-38 Program Development

6.7 Executing a Program

To execute a program, simply enter its pathname. For example, to execute program T3,
just enter

$ T3

The operating system searches for a file named T3 according to its usual search rules, then
calls the loader utility. The loader utility is user transparent. It binds unresolved external
symbols in your executable object file with global symbols in the language and system li­
braries. Then, it executes the program.

By default, standard input and standard output for the program are directed to the key­
board and display. You can redirect these files by using the shell's redirection notation.
For example, to redirect standard input when you invoke T3, type:

$ T3 <TRADING_DATA

The < character redirects standard input to the file TRADING_DATA. You can redirect
standard output in a similar fashion, for example:

$ T3 >results

This command uses the> character to redirect standard output for T3 to the file results.

6.8 Debugging Programs in a Domain Environment

The Domain systems support two source level debuggers. The following sections describe
them briefly. For more information refer to the debugging manual and the Domain/OS
Programming Environment Reference manual.

6.8.1 The Domain Distributed Debugging Environment Utility

The Domain Distributed Debugging Environment is a powerful screen-oriented debugger
that provides all the features of other high-level language debuggers. To prepare a file for
debugging, you do not have to do anything special at bind time but you do have to com­
pile with the -db, -dba, or -dbs compiler options. -db provides minimal debugger prepa­
ration; -dba and -dbs provide full debugger preparation.

For complete details on the debugger, refer to the Domain Distributed Debugging Environ­
ment Reference.

Program Development 6-39

I

6.8.2 The dbx Utility

dbx is the traditional Berkeley UNIX source language debugger. Although it is usually
available only on BSD systems, the Domain version is available regardless of what environ­
ment you are running. However, it is not available on Series 10000 workstations. The
command syntax for invoking dbx is:

dbx [options] [object Jile [coredump]]

where object Jile is the name of the program you want to debug. If you specify a
coredump filename, or if a file named core exists in the working directory, you can use
dbx to examine the state of a program that has aborted prematurely.

For complete details about the dbx utility, refer to the BSD UNIX Programmer's Manual
or the SysV Programmer's Guide, Volume II.

6.9 Program Development Tools

Domain/OS supports several programming tools that aid in program development, debug­
ging, and source management. This section describes briefly the tools listed below. The
description for each tool includes information about where to find further information.
See the Preface for a complete listing of related manuals.

• Traceback (tb)

• DSEE (Domain Software Engineering Environment)

• Domain/Dialogue

• Domain/PAK (Domain Program Analysis Kit)

6.9.1 Traceback (tb)

If you execute a program and the system reports an error, you can use the tb (traceback)
utility to find out what routine triggered the error. To invoke tb, enter the command

$ tb

immediately after a faulty execution of the program.

For example, suppose you run a program named test_tb that asks for numerical input.
The source code for test_tb is as follows:

program test_tb;
var

n: integer;
begin

end.

write('please enter a number ');
readln(n);
writeln('your number is ' ,n)

6-40 Program Development

However, when you run test_tb, you give it a character string instead of a number, and
the program terminates with an error. If you then invoke tb, the whole sequence might
look like the following:

$ test_tb.bin
please enter a number alta
?(sh) "test_tb.bin" - invalid read data (library/Pascal)
$ tb
Process
Time
Program
status
In routine
Called from
Called from
Called from
Called from
Called from
Called from
Called from
$

8835 (parent 8761, group 8761)
90/10/25.10:07(EDT)
//my_node/my_name/pascal_programs/test_tb.bin
050DOOOA: invalid read data (library/Pascal)
"pfm_$error_trap" line 185
"error" line 430
"get_integer" line 1742
"pas_$read" line 1915
"test_tb" line 6
"PM_$CALL" line 176
"pgm_Sload_run" line 903
"pgm_$invoke_uid_pn" line 1124

After listing identifying information about the process, time and program, the tb utility
reports the error status, which in this case is:

Status 050DOOOA: invalid read data (library/Pascal)

Then, tb shows the chain of calls leading from the routine in which the error occurred all
the way back to the main program block. For example, routine pfm_$error_trap reported
the error. pfm_$error_trap was called by the error routine. The error routine was called
by the get_integer routine. The get_integer routine was called by line 1915 of the
pas_$read routine, which was called by line 6 of the test_tb routine. The test_tb routine
was called by PM_$CALL which was called by pgm_$load_run. Since all of the routines
except test_tb are system routines, it is probable that the error occurred at line 6 of the
test _ tb routine.

See the BSD Command Reference, the SysV Command Reference, and the Aegis Command
Reference for details about the tb utility.

6.9.2 The DSEE Product

The DSEE (Domain Software Engineering Environment) environment is a support environ­
ment for software development. DSEE helps engineers develop, manage, and maintain
software projects; it is especially useful for large-scale projects involving several modules
and developers.You can use DSEE for:

• Source code and documentation storage and control

• Audit trails

• Release and Engineering Change Order (ECO) control

• Project histories

Program Development 6-41

• Dependency tracking

• System building

This chapter described a traditional program development cycle (i. e., compiling, building
libraries, binding, debugging); the DSEE product provides some sophisticated enhancements
to this cycle. For information on the optional OSEE product, see Engineering in the DSEE
Environment.

6.9.3 Open Dialogue and Domain/Dialogue

Open Dialogue and Domain/Dialogue are tools for defining the user interface to an applica­
tion program. Open Dialogue can be used on both Apollo and non-Apollo workstations
and is layered on the UNIX system and the X Window System. Open Dialogue also allows
you to create interfaces that are compliant with the Open Software Foundation (OSF) in­
terface design standards presented in the MOTIF Style Guide. Domain/Dialogue can be
used only on Apollo workstations and is layered on Domain/OS and Graphics Primitives
Resource (GPR).

Both products enable you to separate the user interface from the application code.

For the user interface, this separation means that you can

• Focus more time and attention on the interface than is possible when it is inter­
twined with the application code.

• Develop modular interfaces that are consistent in design from application to appli­
cation because they are developed with the same set of tools.

• Use an iterative approach to interface design. A program's user interface can be
rapidly prototyped and modified without affecting the application code. Successive
testing and refinement are relatively easy, making it possible to fine-tune the inter­
face.

• Develop multiple user interfaces to a program, allowing users to choose a style of
interaction with which they feel most comfortable.

For the application, this separation means that you can

• Write less code. Because Open Dialogue and Domain/Dialogue handle interac­
tions with the user, the application designer does not have to provide the code for
doing so.

• Achieve a modular approach to writing code that promotes phased and iterative
application development independent of user interface development.

For details about Domain/Dialogue, see the Domain/Dialogue User's Guide.

6-42 Program Development

For details about Open Dialogue, see

• Open Dialogue Reference

• Creating User Interfaces with Open Dialogue

• MOTIF Style Guide

• Customizing Open Dialogue

6.9.4 Domain/PAK

Domain/PAK (Domain Performance Analysis Kit) is a collection of the following three pro­
grams:

• DSPST (Display Process Status) looks at the relative use of CPU time by several
processes at the system level.

• DPAT (Domain Performance Analysis Tool) is an interactive tool that looks at the
performance of programs, including I/O, paging, and system calls, at the proce­
dure level.

• HPC (Histogram Program Counter) looks at the performance of compute-bound
procedures at the statement level.

Domain/PAK allows you to analyze the performance of a program. It is particularly useful
for isolating bottlenecks. See Analyzing Program Performance with DomainlPAK for more
details about Domain/PAK.

6.10 Program Development Using the Network File System (NFS)

Domain Pascal is fully compatible with the Network File System (NFS). You can redirect
the binary output of the Pascal compiler to a file on a remote node that you have accessed
using NFS, and you can then run the program on the remote node.

In order to use this feature of Domain Pascal, you must have Domain NFS installed on
your system.

For example, suppose you issue the following NFS mount command to gain access to a
remote node:

$ letc/mount -0 soft faraway:1 lother_node

This command, which you can issue in any shell, gives you access to the entire directory
structure of the remote node Ilfaraway. You can access this directory structure as if it
were a local directory named lother_node.

Program Development 6-43

For instance, to compile the program test.pas and place it in the directory Itmp on the
remote node, issue the command

$ Icom/pas test -b lother_node/tmp/test

You can also place the source listing in a directory on the remote node by using the -I
pathname option.

Then you can run the program as follows:

$ 10ther_Dode/tmp/test.bin

You can also use the remote node directory as your working directory. If you do so, com­
piler options that use the name of the current working directory work as usual.

For instance, you can use the -I option to generate a listing file, as shown in the following
sequence of commands (the example assumes you are working in a BSD or SysV shell):

% letc/mount -0 soft faraway:1 lother_node
% cp -/test.pas lother_node/test.pas
% cd lother_node
% Icom/pas test -I

% Is
test. 1st

For more information about Domain NFS, see Using NFS on the Domain Network.

-------88-------

6-44 Program Development

Chapter 7

External Routines and
Cross-Language Communication

This chapter describes how to create and call Pascal modules and how to call FORTRAN
and C routines from a Domain Pascal program. Briefly, this chapter covers the following
topics:

• Creating Pascal modules

• Accessing a Pascal variable or routine stored in a separately compiled module

• Accessing FORTRAN routines from a Pascal program

• Accessing C routines from a Pascal program

7.1 Modules

It is usually a good idea to break a large Pascal program into several separately compiled
modules. After you compile each module, you can bind the resulting object files into one
executable object file. (See Chapter 6 for details about binding.)

Every program must consist of one main program. It may also contain one or more mod­
ules. Chapter 2 contains a description of the main program's format. A main program must
begin with the keyword program. A module begins with the keyword module. It takes the
format shown in Figure 7-1.

External Routines and
Cross-Language Communication 7-1

- Define part
~ - Label decl part ~

~~
Const decl part

~~
module heading

Type dec I part

- declarations
Var dec I part

~

routines
....
~

~.
routine heading
declarations -nested routines

Begin

action
End;

Figure 7-1. Format of a Module

At run time, the start address of the program is the first statement in the main routine of
the main program.

The format of a module is very similar to the format of the main program shown in
Figure 7-1. The differences between the formats are:

• A module takes a module heading rather than a program heading. (See the next
section for a description of the module heading.)

• A module can contain zero or more routines; each routine must have a name.
That is, the main program always contains one main (unnamed) routine, but a
module must consist of named routines only.

• The declarations part of a module may contain a define part. The "Method 2"
section of this chapter describes the define part.

7 .1.1 Module Heading

The module heading is similar to a program heading except that it starts with the keyword
module instead of program, and that it cannot take a file_list. Therefore, the module
heading takes the following format:

module name [, COde_section_name] [, data_section_name];

Name must be an identifier. The name you pick has no effect on the module.

External Routines and
7-2 Cross-Language Communication

Code_section_name and data_section_name are optional elements of the module heading.
Use them to specify nondefault section names for the code and data in the module. A sec­
tion is a named contiguous area of memory that shares the same attributes. (See the Do­
main/OS Programming Environment Reference for details on sections and attributes.) By
default, Domain Pascal assigns all the code in your module to the . text section and all the
data in your module to the .data section. To assign your code and data to nondefault sec­
tions, specify a code_section_name and a data_section_name.

Chapter 2 described the format of a main program, this chapter describes the format of a
module, and Chapter 6 detailed the method for compiling and binding modules and main
programs. The following sections explain how to write your source code so that the sepa­
rately compiled units can communicate with one another.

7.2 Accessing a Variable Stored in Another Pascal Module

Domain Pascal provides four methods for accessing the value of a variable stored in a
separately compiled file. The trick to the first three methods is using the correct vari­
able_allocation_clause when declaring variables. The optional variable_allocation_clause
precedes the data type in a var declaration part as shown below:

var (section_name)

identifier _list 1 [variable _allocation _clause] typename 1 ;

[

For variable_allocation_clause, enter one of the following three identifiers:

• Define-tells Pascal to allocate the variable in a static data area and make its
name externally accessible.

• Extern-tells Pascal to not allocate the variable because it is possibly allocated in a
separately compiled module or program.

• Static-tells Pascal to allocate the variable in a static data area and keep its name
local to this module or program. Use the static clause when a variable needs to
retain its value from one execution of a routine to the next.

For example, the following fragment declares x as a statically allocated variable:

VAR
x : static integer16;

After the execution of the routine in which x is declared, x still retains its value.

External Routines and
Cross-Language Communication 7-3

The following sections demonstrate three of the four methods for accessing a variable
stored in another Domain Pascal module.

7.2.1 Method 1

The following fragments demonstrate the first method for accessing an externally stored
variable:

program Math; module Sub2;
var var

x : EXTERN integer16; x : DEFINE integer16 .- 8;

Procedure twoa;
BEGIN BEGIN

writeln(x); {access x} writeln(x); {access x}
END. END;

This method uses the variable allocation clauses extern and define to make the value of x
available to both Math and Sub2. The extern clause in Math tells the compiler that vari­
able x is probably defined somewhere outside of Math. The define clause in Sub2 tells
the compiler that x is defined within Sub2; the ":= 8" tells the compiler to initialize x to
8. If x is not initialized, the writeln (x) statement generates undefined output.

When you bind, the binder matches the external reference to x in program Math with the
global symbol x defined in module Sub2. Note that you can specify x as an extern in as
many modules as you want; however, you should only define x in one module. If you
define x in more than one module, the binder reports an error.

7.2.2 Method 2

The following fragments demonstrate the second method for accessing an externally stored
variable:

program Math;
var

x : EXTERN integer16;

. BEGIN
writeln(x); {access x}

END.

module Sub2;
var

x : EXTERN integer16;
DEFINE

x := 8;

Procedure twoa;
BEGIN

writeln(x); {access x}
END;

Method 2 introduces the define statement. The define statement is similar to the define
variable allocation clause. The define statement in Sub2 serves two purposes. First, it tell&
the compiler that x is defined in module Sub2. Second, it tells the compiler that the initial
value of x is 8.

External Routines and
7-4 Cross-Language Communication

The define statement takes the following syntax:

define

variable} [:= initial_ValUe}];

[variableN [:= inilial_valueN];]

Notice that the := initial_value is optional. If you do not provide an initial_value, the
value of variable is undefined; that is, there is no way to predict what the variable's initial
value will be.

NOTE: Order is crucial. If you use Method 2, the var declaration part
must precede the define statement. (However, see Method 3
later in this chapter.)

Allowing a define statement in module Sub2 along with a corresponding extern clause may
appear contradictory at first. After all, a define statement means "it's defined here" and
an extern clause implies "it's defined somewhere else." However, allowing this practice
can be useful. For example, when you write an %include file, there is no way for you to
know where the %include file is going to end up. If the extern clause is stored in an
%include file that happens to end up in a file with a matching define statement no harm
is done.

7.2.2.1 Initializing Extern Variable Arrays

The "Initializing Array Variables" section in Chapter 3 contained a lengthy section on in­
itializing variable arrays. The following paragraphs provide additional details about initializ­
ing an array variable that has the extern variable allocation clause.

Ordinarily the -subchk compiler option causes the compiler to generate code to check that
subscripts are within the defined range of an array. However, the compiler does not gener­
ate this extra code if you do not specify initialization data for an extern array variable.
The compiler cannot check subscripts because the upper bound is not known. If there is
data initialization with the extern declaration, the data is ignored until the variable is de­
fined in a file. However, since the upper bound is known, the compiler can perform sub­
script checking.

When you let the compiler determine the upper bound of the array, make sure that vari­
able declarations do not share the same type declaration. If they do, the first data initiali­
zation for that variable sets the size for all other variables in the type declaration. All in­
itialized variables are then checked against that size, just as if you had specified a constant
upper bound.

External Routines and
Cross-Language Communication 7-5

For example, consider the following fragment:

VAR
tablel, table2
table3
table4

EXTERN array[l .. *] of char;
EXTERN arraY[l .. *] of char;
EXTERN array[l .. *] of char;

DEFINE
tablel := 'This table sets the size,';
table2 := 'so this table will be truncated';
table3 .- 'But separate variable declarations';
table4 := 'solve the problem.';

In the preceding example, variables tablet and table2 share the same anonymous type
declaration. Since tablet precedes table2, Domain Pascal uses the defined size of tablet
to set the size for table2. In this case, tablet is a 25-character string. Therefore, the com­
piler truncates the string "so this table will be truncated" to its first 25 characters. Vari­
ables table3 and table4 are declared separately, so their initializations do not affect each
other.

Domain Pascal issues a warning message when it truncates arrays with a base type of char,
as for table2. However, if the array has a base type other than char, the compiler issues
an error message when it truncates it.

7.2.3 Method 3

The following fragments demonstrate the third method for accessing an externally stored
variable:

program Math;
VAR

x : EXTERN integerl6;

BEGIN
writeln(x); {access x}

END.

module Sub2;
DEFINE

x;
VAR

x : EXTERN integer16 .- 8;

Procedure twoa;
BEGIN

writeln(x); {access x}
END;

Method 3 is similar to Method 2 except that the initialization (:= 8) is done in the var
declaration part rather than in the define statement.

NOTE: Order is crucial. If you use Method 3, the define statement must
precede the var declaration part.

External Routines and
7-6 Cross-Language Communication

7.2.4 Method4

The following fragment demonstrates this fourth method for accessing an externally stored
variable:

Program Math;
VAR (my_sec)

x
y
q

BEGIN

integer16 := 5;
real := 6.2;
array[l .. 3] of char .- 'cat';

writeln(x, y, z);
END.

Module Suh2;
VAR (my_sec)

x
y
q

integer16;
real;
array[l .. 3] of char;

Procedure twoa;
BEGIN

writeln(x, y, z);
END;

Notice that the variables in each module occupy the same nondefault section name,
my_sec. This means that at run time, the variables x, y, and q from Math occupy the
same memory locations as x, y, and q from Sub2. Therefore, whatever is assigned to x in
Math, can be retrieved in Sub2, and vice versa.

There's no requirement that the variables in Sub2 have the same names as the variables in
Math. However, it does make your program far easier to understand if you do give them
the same names. Taking this philosophy one step further, you could greatly simplify vari­
able declaration by putting a named var declaration part into a separate file and using
%include to put it into every module.

You should preserve the order of declarations from one module to the next. For example,
suppose the variable declarations look like this:

Program Math;
VAR (my_sec)

x integer16:= 5;
y real:= 6.2;
q array[l .. 3] of char : = ' cat' ;

Module Sub2;
VAR (my_sec)

y real;
x integer16;
q array[l .. 3] of char;

If you try to access x or y in Sub2, you get garbage results at run time. That's because
when compiling Sub2, the compiler sees y as being the first four bytes in my_sec. How­
ever, when compiling Math, the compiler sees y as being bytes 2 through 5 in my_sec.

External Routines and
Cross-Language Communication 7-7

7.3 Accessing a Routine Stored in Another Pascal Module

Domain Pascal provides two methods for accessing a procedure or function stored in a dif­
ferent module or program. This section explains both methods, but first describes the ex­
tern and internal routine options, which are both critical to that description.

7.3.1 Extern

The routine option extern serves exactly the same purpose for routines that the variable
allocation clause extern serves for variables. Namely, it specifies that a routine is possibly
defined in a separately compiled file. By specifying a routine as extern, you can call it
even if it is defined in another file.

Chapter 5 describes the format of routine options. Extern is like any other routine option,
except that when you use extern, you put the routine heading at the end of the main dec­
laration part of the program or module.

7.3.2 Internal

By default, all routine names in modules are global symbols, and all routine names in main
programs are local symbols. A routine name from the main program can never become a
global symbol. However, you can make a routine name from a module into a local symbol
by specifying the routine option internal. See the "Routine Options" section in Chapter 5
for details on the syntax rules of routine options.

7.3.3 Method 1

Figure 7-2 demonstrates the first method for accessing an externally stored routine. In
this example, program math refers to function exponent; however, function exponent is
stored in module math2. Therefore, function exponent is declared as an extern in pro­
gram math. There is no need to do anything special to module math2 because the com­
piler automatically makes exponent a global symbol in math2. At bind time, the binder
resolves external symbol exponent with global symbol exponent. To keep exponent local
to module math2, you could change the following line in the source code:

FUNCTION exponent (number, power: INTEGER16) : REAL;

to the line shown below:

FUNCTION exponent (number, power INTEGER16) REAL; INTERNAL;

The sample program follows.

External Routines and
7-8 Cross-Language Communication

{**}
PROGRAM math;

VAR
n, p : integer16;
answer : real;

FUNCTION exponent(n,p integer16) real; EXTERN; {exponent is defined
outside this file.}

BEGIN
writeln('The main program calls a separately-compiled routine in');
writeln('order to calculate the value of an integer raised to an');
writeln('integer power.');
writeln;
write('Enter an integer -- '); readln(n);
write('Raised to what power -- '); readln(p);
answer := exponent(n,p);
writeln(n:1, ' raised to the " p:1, ' power is' answer:1);

END.

MODULE math2; {You must bind this module with
program math.}

VAR
number, power, count
run: INTEGER32;

INTEGER16;

FUNCTION exponent (number, power: INTEGER16)
BEGIN

END;

writeln('This is module math2');
if power = 0 then exponent := 1;
run := 1;
for count := 1 to abs(power) do

run := run * number;
if power > 0

then exponent .- run
else exponent .- (1 / run);

REAL;

{**}

Figure 7-2. Method 1 for Accessing an External Routine

External Routines and
Cross-Language Communication 7-9

7.3.4 Method 2

Figure 7-3 demonstrates the second method for accessing an externally-stored routine.

{**}
PROGRAM math;

VAR
n, p : integer16;
answer : real;

FUNCTION exponent(n,p : integer16) : real; EXTERN;
{exponent is defined outside this file.}

BEGIN
writeln('The main program calls a separately-compiled routine in');
writeln('order to calculate the value of an integer raised to an');
writeln('integer power.');
writeln;
write('Enter an integer -- '); readln(n);
write('Raised to what power -- '); readln(p);
answer := exponent(n,p);
writeln(n:1, ' raised to the " p:1, ' power is' answer:1);

END.

MODULE math2; {You must bind this module with program
math}

DEFINE
exponent;

FUNCTION exponent (number, power: INTEGER16)
VAR

number, power, count : INTEGER16;
run: INTEGER32;

FUNCTION exponent;
BEGIN

END;

writeln('This is module math2');
if power = 0 then exponent := 1;
run := 1;
for count := 1 to abs(power) do

run := run * number;
if power > 0

then exponent .- run
else exponent := (1 / run);

REAL; EXTERN;

{**}

Figure 7-3. Method 2 for Accessing an External Routine

External Routines and
7-10 Cross-Language Communication

Under Method 2 you call external routines exactly as you do in Method 1. Therefore, pro­
gram math is unchanged from Method 1. However, you must make the following three
changes in module math2:

• define exponent; - Use a define statement to tell the compiler that exponent is
a global symbol defined in module math2. With one exception, define takes the
syntax described in the" Accessing a Variable Stored in Another Pascal Module"
section earlier in this chapter. The one exception is that you cannot assign an in­
itial value to a procedure or function symbol.

• function exponent (number, power: INTEGERl6) : REAL; EXTERN; - Copy
the function declaration from program math. Since this line should be an exact
copy of the function declaration in the calling module, you should put this line
into a separate file and use the %include directive to include it in both the mod­
ule and the program. That way, you only keep one version of the function decla­
ration.

• function exponent; - Notice that there are no arguments here; only the name of
the function.

Figure 7-4 consists of one main program and two modules. The main program calls two
external routines stored in the two modules. The two modules access some variables that
the main program defines.

External Routines and
Cross-Language Communication 7-11

{**}
Program relativity1;

CONST
speed_of light = 2.997925e8;

{ Both of the following routines are defined in another file: }
Procedure convert_mph_to_light(IN speed_in_mph real;

OUT fraction_of_c : real); EXTERN;
Function contracted_length(IN rest_length real;

IN fraction_of_c: real) real; EXTERN;
VAR

speed_in_mph, fraction_of_c, rest_length: real;
c : DEFINE real := speed of light;

- - {Make the value of c globally known.}
BEGIN

write('Enter the speed of the object (in mph) ');
readln(speed_in_mph);
convert_mph_to_light(speed_in_mph, fraction_of_c);
write('What is the rest length of the object (in meters) -- ');
readln(rest_length);
write('It will be perceived in the rest frame of reference as ');
writeln(contracted_length

(rest_length, fraction_of_c):8:6, ' meters');
END.

Module relativity2;
DEFINE

convert mph_to_light;

Procedure convert_mph_to_light(IN speed in mph
OUT fraction_of_c

VAR

real;
real); EXTERN;

speed_in_mph, speed_in_mps, fraction_of_c, percentage: real;
c : EXTERN real;

{ The following procedure converts a speed (given in miles per hour) }
{ into a percentage of the speed of light. }

Procedure convert_mph_to_light;
BEGIN

speed_in_mps := (0.44704 * speed_in_mph);
fraction_of_c := speed_in_mps / c;
percentage := (100 * fraction_of_c);
writeln('This speed is " percentage: 8:6, ' percent of c.');

END;
{continued}

{**}

Figure 7-4. Another Example of Calling External Routines

External Routines and
7-12 Cross-Language Communication

{**}
Module relativity3;

DEFINE
contracted_length;

Function contracted_length(IN rest_length
IN fraction_of_c

VAR
rest_length: real;
speed_in_mps : real;

real;
real) real; EXTERN;

{ This function calculates the relativistic length contraction. }
Function contracted_length;
BEGIN

contracted_length := rest_length * sqrt(1 - sqr(fraction_of_c));
END;

{**}

Figure 7-4. Another Example of Calling External Routines (Cont.)

Suppose you store program relativityl in file relativityl. pas, module relativity2 in file
relativity2.pas, and module relativity3 in file relativity3.pas. To compile the three files,
enter the following three commands:

$ pas relativity 1
$ pas relativity2
$ pas relativity3

You must now bind them together by entering a command like the following:

$ bind relativity. bin relativity2. bin relativity3. bin -b einstein

Here is a sample execution of the program:

$ einstein
Enter the speed of the object (in mph) -- 4500000
This speed is 0.667121 percent of c.
What is the rest length of the object (in meters) -- 10
It will be perceived in the rest frame of reference as 9.999778 meters

7.4 Calling a FORTRAN Routine from Pascal

Domain Pascal permits you to call routines written in Domain FORTRAN source code. To
accomplish this, perform the following steps:

1. Write source code in Domain Pascal that refers to an external routine. Compile
with the Domain Pascal compiler. Domain Pascal creates an object file.

2. Write source code in Domain FORTRAN. Compile with the Domain FORTRAN
compiler. Domain FORTRAN creates an object file.

External Routines and
Cross-Language Communication 7-13

3. Bind the object file(s) the Pascal compiler created with the object file(s) the FOR­
TRAN compiler created, using the -b binder option to tell the binder to create
one executable object file.

4. Execute the object file as you would execute any other object file.

The following sections describes steps 1 and 2. For information on steps 3 and 4, see
Chapter 6.

NOTE: The following sections explain how to call Domain FORTRAN
from Domain Pascal. If you want to learn how to call Pascal from
FORTRAN, see the Domain FORTRAN Language Reference.

7.5 Data Type Correspondence for Pascal and FORTRAN

There is no great difference between making a call to a FORTRAN function or subroutine
and making a call to an extern Pascal routine. However, before passing data between Do­
main Pascal and Domain FORTRAN, you must understand how Pascal data types corre­
spond to FORTRAN data types. Table 7-1 lists these correspondences.

Table 7-1. Domain Pascal and Domain FORTRAN Data Types

Domain Pascal Domain FORTRAN

Integer, Integer16 Integer· 2

Integer32 Integer, Integer· 4

Real, Single Real, Real· 4

Double Double Precision, Real·S

Char Character· 1

Boolean Logical· 1

Set set emulation calls

User-defined record as shown in Complex, Complex·16
Section 7.5.2
Array array (with restrictions)

Pointer Pointer statement

The integer, real, and character data types in both languages correspond very well to each
other. For example, Pascal's integer16 data type is identical to FORTRAN's integer·2
data type, and a real in one language is exactly the same as a real in the other.

There is a difference in what the keyword integer means in the two languages. Integer in
Domain Pascal is a 2-byte entity, while in Domain FORTRAN, integer is four bytes by
default. To avoid any confusion, you should use the specific integer data types (integerl6,
integer32, integer·2, and integer·4) rather than the generic integer.

External Routines and
7 -14 Cross-Language Communication

Unlike Pascal, Domain FORTRAN doesn't actually support a set data type. However, you
can make special set emulation calls from within a Domain FORTRAN program. There­
fore, you can pass a set variable as an argument from a Pascal program and use the set
emulation calls within your FORTRAN program.

7.5.1 Boolean and Logical Correspondence

Pascal's boolean data type and FORTRAN's logical*1 data type are identical 1-byte ob­
jects. They may be freely passed between programs written in the two languages.

In some instances, however, you may need to use FORTRAN's 4-byte logical (the default
if you omit a size specification in the declaration) or logical*4 (which is equivalent to
logical) to communicate with a Pascal routine. FORTRAN's 4-byte logical takes up four
bytes of memory. The true or false value is set in all four bytes. By default, a Pascal
boolean object consumes only one byte. To make the data types match, therefore, you
should use the long size attribute to create a 4-byte boolean type, as shown in the follow­
ing fragment:

TYPE
boo14 = [long] boolean;

See the "Size-Extension" section of Chapter 3 for details about the long attribute.

7.5.2 Simulating FORTRAN's Complex Data Type

Unlike FORTRAN, Domain Pascal doesn't support a predeclared complex data type. How­
ever, you can easily declare a Pascal record type that emulates complex. In FORTRAN,
complex consists of two single-precision real numbers. Therefore, you could define a com­
plex Pascal record as follows:

TYPE
complex record

r
imaginary

end;

single;
single;

Similarly, you could define a complex* 16 Pascal record as follows:

TYPE
complex16 record

r
imaginary

end;

double;
double;

External Routines and
Cross-Language Communication 7-1S

7.5.3 Array Correspondence

Single-dimensional arrays (including boolean/logical arrays when you make the adjust­
ments described above) of the two languages correspond perfectly; for example:

In Domain Pascal

x
x
x

Array[1 .. 10] of CHAR
Array[l .. 50] of INTEGER16
Array[1 .. 20] of DOUBLE

In Domain FORTRAN

character*10 x
integer*2 x(50)
real*8 x(20)

The one exception is as follows: you cannot call from Pascal a Domain FORTRAN routine
that has as a parameter a character array of unspecified length. For example, do not
specify an array like the following as a parameter in the Domain FORTRAN routine:

CHARACTER*(*) x

Multidimensional arrays in the two languages do not correspond very well. The tricky part
is that Pascal represents multidimensional arrays differently than FORTRAN. To represent
arrays in Domain Pascal, the rightmost index varies fastest. For example, Domain Pascal
represents the six elements of an array[1 .. 2, 1..3] in the following order:

1,1
1,2
1,3
2,1
2,2
2,3

However, the leftmost element varies fastest in Domain FORTRAN arrays. Therefore, Do­
main FORTRAN represents the six elements of an array(2,3) in the following order:

1,1
2,1
1,2
2,2
1,3
2,3

Obviously this can lead to confusion if you pass a multidimensional Pascal array as an argu­
ment to a Domain FORTRAN parameter. However, there is a way to avoid this confusion:
declare the array dimensions of the Domain FORTRAN parameter in reverse order. For
example, instead of declaring integer*4 array(2,3), declare integer*4 array(3,2). Follow­
ing are two more examples:

Argument in Pascal Parameter in FORTRAN

x array[l .. 5, 1 .. 10] of real real*4 x(10,5)

x array[l .. 2, 1 .. 3, 1 .. 4] of real real*4 x(4,3,2)

External Routines and
7-16 Cross-Language Communication

7.6 Passing Data Between FORTRAN and Pascal

There are two ways to pass data between a Domain Pascal program and a Domain FOR­
TRAN function or subroutine. You can either establish a common section of memory for
sharing data, or you can pass the data as an argument to a routine. The next section dem­
onstrates the second method, while the following paragraphs demonstrate the first method.

Earlier in this chapter you learned how to use a named section to pass data between two
separately compiled Pascal modules. A named section in Domain Pascal is identical to the
named common area of Domain FORTRAN. If you give a named section the same name
as a named common area, the binder establishes a section of memory for sharing data.

For example, suppose that you want both a Pascal program and a FORTRAN function or
subroutine to access two variables-a 16-bit integer and an 8-byte (double-precision) real
number. In the Domain Pascal program, you can declare the two variables as follows:

VAR (my_sec)
x INTEGER16;
d : DOUBLE;

If you want the value of these two variables to be accessible from the Domain FORTRAN
program, declare them as follows in the FORTRAN program:

I NTEGER * 2 x
REAL * 8 d
COMMON /my_sec/ x,d

Remember to preserve the same order of variable declaration in the common statement
that you did in the var declaration part. For example, you will get peculiar run-time re­
sults if you declare your common statement as

COMMON /my_sec/ d,x

7.7 Calling FORTRAN Functions and Subroutines

This section demonstrates how to call a Domain FORTRAN function or subroutine from a
Domain Pascal program. Calling Domain FORTRAN from Domain Pascal is straightfor­
ward; the only possible complication is that the data types of the arguments and parameters
may not correspond perfectly. (See the "Data Type Correspondence" section earlier in
this chapter for ways to remedy the data type mismatches.)

Domain Pascal supports a variety of parameter types including value parameters, variable
parameters, in, out, and in out parameters. (See Section 5.3.) Domain FORTRAN sup~
ports only one kind of parameter type, and it is equivalent to the in out parameter type in
Domain Pascal. That is, Domain FORTRAN accepts whatever value(s) you pass to it, and
in turn, always passes a value back.

External Routines and
Cross-Language Communication 7-17

7.7.1 Calling a Function

Figure 7-5 and Figure 7-6 show a Domain Pascal program that calls a Domain FORTRAN
function. The call is trivial since Domain Pascal's single data type corresponds perfectly to
the real*4 data type of Domain FORTRAN.

{***}
program pas_to_ftn_hypo_func;
{ NOTE: You must also obtain the FORTRAN program named "hypotenuse." }
{ After compiling pas_to_ftn_hypo_func and hypotenuse, you must }
{ bind them together. }
{ This Pascal program calls an external function named HYPOTENUSE. }
{ Compare to pas_to_ftn_hypo_sub, a program that calls a subroutine }

VAR
leg1, leg2 : single;

function hypotenuse (in out leg1, leg2 single) single; extern;

BEGIN

writeln ('This program calculates the hypotenuse of a right');
writeln ('triangle given the length of its two legs.');
write ('Enter the length of the first leg -- ');
readln (leg1);
write ('Enter the length of the second leg -- ');
readln (leg2);

writeln ('The length of the hypotenuse is: '
, hypotenuse(leg1,leg2):5:2);

END.
{***}

Figure 7-5. An Example of Calling FORTRAN: pas_to_ftn_hypo_func

* This is a FORTRAN function for calculating the hypotenuse of a
* right triangle. You don't have to do anything special to this file
* to make it callable by Pascal. In fact, this function could just
* as easily be called by a FORTRAN program.

real*4 function hypotenuse (11 , 12)
real*4 11, 12

{real*4 corresponds to the Pascal data type single.}
hypotenuse = sqrt«ll * 11) + (12 * 12»
end

Figure 7-6. An Example of Calling FORTRAN: hypotenuse

External Routines and
7-18 Cross-Language Communication

These programs are available online and are named pas_to_ftn_hypo_func and hypote­
nuse.

7.7.2 Calling a Subroutine

A function in Pascal corresponds to a function in FORTRAN. A procedure in Pascal cor­
responds to a subroutine in FORTRAN. In the example in Figure 7-7 and Figure 7-8,
hypotenuse changes from a function to a subroutine, and the Pascal program changes to
reflect that it is expecting an external procedure. Note that the Pascal program could actu­
ally be calling a Pascal procedure. There's nothing in the program that designates the lan­
guage in which the called procedure is written.

{**}
program pas_to_ftn_hypo_sub;
{ NOTE: You must also obtain the FORTRAN program named "hypot_sub." }
{ After compiling pas_to_ftn_hypo_sub and hypot_sub, you must }
{ bind them together. }
{ This Pascal program calls an external subroutine named HYPOTENUSE. }
{ Although program pas_to_ftn_hypo_sub is bound to hypot_sub,which }
{ is a FORTRAN program, we could also bind it to a Pascal module }
{ containing a procedure named HYPOTENUSE. }

VAR
legl, leg2, result: real;

procedure hypotenuse (in out legl, leg2, result real) extern;

BEGIN

writeln ('This program calculates the hypotenuse of a right');
writeln ('triangle given the length of its two legs.');
write ('Enter the length of the first leg -- ');
read In (legl);
write ('Enter the length of the second leg -- ');
read In (leg2);

hypotenuse(legl,leg2,result);
writeln ('The length of the hypotenuse is: result:5:2);

END.
{**}

Figure 7-7. An Example of Calling FORTRAN: pas_to_ftn_hypo_sub

External Routines and
Cross-Language Communication 7-19

* This is a FORTRAN subroutine for calculating the hypotenuse of a
* right triangle.

subroutine hypotenuse (11 , 12, result)
real*4 11, 12, result

result = sqrt«ll * 11) + (12 * 12»
end

Figure 7-8. An Example 0/ Calling FORTRAN: hypot_sub

These programs are available online and are named pas_to_ftn_hypo_sub and hypot_sub.

7.7.3 Passing Character Arguments

Passing arguments when two languages' data types match exactly is relatively easy, but pass­
ing them when they don't often means you need to do extra work.

If you pass a string of chars from Domain Pascal to Domain FORTRAN, you should add
an extra parameter to the Pascal routine heading. This is because FORTRAN adds an im­
plicit string length argument whenever it passes a character string back to a calling routiqe.

Suppose your Pascal program includes the following:

TYPE

VAR
name = array[1 .. 10] of char;

first name
len

name;
integer16;

procedure change_name(in out first_name
in out len

name;
integer16); extern;

change name(first name,len);
- - {Assume "change_name" is a FORTRAN subroutine.}

This Pascal routine heading includes an "extra" parameter for the length of first_name
that FORTRAN will add when Pascal calls the routine. The length argument must be of
type integer1' because FORTRAN's implicit length argument is an integer*2.

The FORTRAN routine heading does not explicitly include the length argument. For this
example, it would look like this:

subroutine change_name(first_name)
character*10 first_name

External Routines and
7-20 Cross-Language Communication

If you send multiple strings to Domain FORTRAN and you include FORTRAN's implicit
length arguments in the Pascal parameter list, the length parameters must always appear at
the end of the routine heading. That is, it is not correct to list them as string 1, len 1,
string2, len2, etc. For instance:

{ Pascal program fragment. }
TYPE

fn = array[l .. lO] of char;
In = array[1 .. 20] of char;

procedure process_name(in out
in out

first_name
middle initial

in out last_name
in out lenl, len2, len3

fn;
char;
In;
integerl6); extern;

process_name (first_name , middle_initial, last_name, lenl, len2, len3);

* FORTRAN subroutine fragment.
subroutine process_name (first_name, middle_initial, last_name)

character*lO first name
character middle initial
character*20 last_name

7.7.4 Passing a Mixture of Data Types

The Domain Pascal program in Figure 7-9 and the Domain FORTRAN subroutine in
Figure 7-10 demonstrate passing a variety of data types.

External Routines and
Cross-Language Communication 7-21

{**}
program pas to ftn mixed;
{ NOTE: You-mu'it also obtain the FORTRAN program named "mixed types." }
{ After compiling pas_to_ftn_mixed and mixed_types, you must bind}
{ them together. }
{ This program demonstrates passing arguments of several different data}
{ types to a FORTRAN subroutine. }

TYPE

VAR

last_names = array[1 .. 10] of char;
two_by_four = array[1 .. 2, 1 .. 4] of integer16;
complex = record

boolrec

age
lying
name
multi

c

r
imaginary

end;
record

bool_var
a,b,c

end;

real;
real;

boolean;
boolean;

integer32 := 1000000;
boolrec;
last_names := 'Tucker';
two_by_four := [[5,8,11,14]

[100, 103, 106, 109]];
complex := [4.53, 0.98];

countl, count2, len: integer16;

procedure print_vals (in age: integer32; in lying: boolrec;
in name: last_names; in multi two_by_four;
in c : complex);

{ This procedure prints the values of the variables. }

BEGIN
writeln ('Age = " age:5);
writeln ('Lying = " lying.bool_var:5);
writeln ('Name = " name);

writeln ('Multi = ');
for count 1 := 1 to 2 do

begin
for count2 := 1 to 4 do

write(multi[countl,count2]:5);
writeln;
end; {for}

writeln ('Complex c.r:4:2, ',', c.imaginary:5:2);
END; {end procedure print_vals}

{continued}
{**}

Figure 7-9. An Example of Calling FORTRAN: pas_to_ftn_mixed

External Routines and
7-22 Cross-Language Communication

{**}
{ Note "extra" len argument in the parameter list of mixed_types.}
procedure mixed _types (in out

BEGIN {main program}
lying.bool_var := true;

in out
in out
in out
in out
in out
extern;

age : integer32;
lying : boolrec;
name : last _names;
multi : two_by_four;
c : complex;
len : integer16) ;

writeln (chr(10) , 'Before calling FORTRAN', chr(10»;
print_vals(age, lying, name, multi, c);

mixed_types (age, lying, name, multi, c, len);
writeln (chr(10), 'After calling FORTRAN', chr(10»;
print_vals(age, lying, name, multi, c);
END.
{**}

Figure 7-9. An Example of Calling FORTRAN: pas_to_ftn_mixed (Cont.)

* This is a FORTRAN subroutine for assigning new values to arguments
* passed in from a Pascal program. It demonstrates how to pass a
* variety of data types.

subroutine mixed_types (a,l,n,m,c)
integer*4 a { Declare variables.}
logical 1
character*10 n
integer*2
complex

m(4,2), count
c

* Make reassignments.
a = a * 2
1 = .false.
n = 'Carter'

do count = 1,4
m(count,l)

enddo

c = (2.0, -2.0)

m(count,l) + 1000

end

Figure 7-10. An Example of Calling FORTRAN: mixed_types

External Routines and
Cross-Language Communication 7-23

These programs are available online and are named pas_to_ftn_mixed and mixed_types.
If you compile, bind, and execute these programs, you get the following output:

Before calling FORTRAN

Age = 1000000
Lying = TRUE
Name = Tucker
Multi

5 8 11 14
100 103 106 109

Complex = 4.53, 0.98

After calling FORTRAN

Age = 2000000
Lying = FALSE
Name = Carter
Multi

1005 1008 1011 1014
100 103 106 109

Complex = 2.00,-2.00

7.7.5 Passing Procedures and Functions

Passing a Pascal routine to a FORTRAN subprogram is complicated by the fact that FOR­
TRAN expects all arguments to be passed by reference. For this reason, you must pass a
pointer to the Pascal routine, not the routine itself. To do this, you declare the type of
the parameter as a procedure or function pointer, and pass the address of the routine as
the actual argument.

The Pascal program shown in Figure 7-11 passes a function, an unsorted array, and the
size of the array to a FORTRAN subroutine. The function can be either ascend, which
compares two integers for an ascending sort, or descend, which compares two integers for
a descending sort. The FORTRAN subroutine sort_array calls one of the two Pascal func­
tions when it sorts the array.

External Routines and
7-24 Cross-Language Communication

{**}
program pass_func_to_fortran_p(input,output);

{
{
{
{
{

NOTE: To execute this program, you must also obtain the
Pascal functions in the module "funcs_for_fortran_p" and
FORTRAN program named "sort_array_f". After compiling
pass_func_to_fortran_p, funcs_for_fortran_p, and
sort_array_f, you must link them together.

type

}
the }

}
}
}

arrtype = array [1 .. 10] of integer32;
proc_ptr_type Afunction(var x, y :integer32) integer32;

var
direction, i : integer32;
intarr: arrtype .- [27, 19, 34, 65, 7, 9, 2, 12, 75, 1];
SIZE : integer32 := 10;

procedure sort_array(in compare : proc_ptr_type;
var size integer32;
var list: arrtype); extern;

function ascend(var a, b : integer32) : integer32; extern;
function descend(var a, b : integer32) : integer32; extern;

begin
write1n('Enter 1 to sort in ascending order, '

'2 to sort in descending order: ');
read1n(direction);
if direction = 1 then

sort_array (addr (ascend) , SIZE, intarr)
else

sort_array (addr (descend) , SIZE, intarr);
for i := 1 to SIZE do

write1n(intarr[i]);
end.
{**}

Figure 7-11. An Example of Calling FORTRAN: pass_func_to_fortran_p

Pascal can take the address of an external routine, but not of an internal routine. Because
FORTRAN requires us to pass the address of the Pascal routine, we have to declare the
ascend and descend functions extern in the Pascal program and define them in the sepa­
rately compiled module shown in Figure 7-12.

External Routines and
Cross-Language Communication 7-25

{**}
MODULE funcs_for_fortran_p;

{ NOTE: To execute this program, you must also obtain the }
{ Pascal program "pass_func_to_fortran_p" and the FORTRAN }
{ program named "sort_array_f". After compiling }
{ pass_func_to_fortran_p, funcs_for_fortran_p, and }
{ sort_array_f, you must link them together. }

FUNCTION ascend(var a, b : integer32) : integer32;
BEGIN

if a > b then
ascend := 1

else
ascend := 0;

END;

FUNCTION descend(var a, b
BEGIN

if b > a then
descend .- 1

else
descend .- 0;

integer32) integer32;

END;
{**}

Figure 7-12. An Example of Calling FORTRAN: funcs_for_fortran_p

External Routines and
7-26 Cross-Language Communication

The FORTRAN subroutine is shown in Figure 7-13.

C***
C Program name is "sort_array_f".
C If you use f77, compile with the -WO,-nuc option.

C NOTE:
C
C
C

You must also obtain the Pascal program named
"pass_func_to_fortranJ>". After compiling
pass_func_to_fortran_p and sort_arraY_f, you must
link them together.

SUBROUTINE sort_array (compare, size, list)
INTEGER*4 compare, size, list(size)
INTEGER*4 i, temp
LOGICAL out_of_order

out_of_order = .TRUE.
DO WHILE (out_of_order)

out_of_order = . FALSE.
DO 10 i = 1, size-1

IF (COMPARE (list (i) , list(i+1».EQ.1) THEN
out_of_order = . TRUE.
temp = list(i)
list(i) = list(i+1)
list(i+1) = temp

END IF
10 CONTINUE

END DO
RETURN
END

C***

Figure 7-13. An Example of Calling FORTRAN: sort_array_f

External Routines and
Cross-Language Communication 7-27

You can compile, link, and execute this program as follows:

$ pas pass_func_to_fortran_p.pas
No errors, no warnings, no info msgs, Pascal compiler 6SK
$ pas funcs_for_fortran_p.pas
No errors, no warnings, no info msgs, Pascal compiler 6SK
$ lusr/bin/f77 -c -WO,-nuc sort_array_f.f
sort_array_f.f:
$ bind pass_func_to_fortran_p.bin funcs_for_fortran_p.bin sort_array_f.o -b pass
All Globals are resolved.
$ pass
Enter 1 to sort in ascending order, 2 to sort in descending order:
1

1
2
7
9

12
19
27
34
65
75

7.8 Calling a C Routine from Pascal

In addition to allowing you to call FORTRAN routines, Domain Pascal permits you to call
routines written in Domain/C source code. To accomplish this, perform the following steps:

1. Write source code in Domain Pascal that calls a routine. Compile it with the Do­
main Pascal compiler. Domain Pascal creates an object file.

2. Write source code in Domain/C. Compile it with the Domain/C compiler.
Domain/C creates an object file.

3. Bind the object file(s) the Pascal compiler created with the object file(s) the C
compiler created, using the -b binder option to create one executable object file.

4. Execute the object file as you would execute any other object file.

The remainder of this chapter describes steps 1 and 2. For information on steps 3 and 4,
see Chapter 6.

NOTE: . The following sections explain how to call Domain/C from Do­
main Pascal. If you want to learn how to call Pascal from C, see
the DomainlC Language Reference.

External Routines and
7-28 Cross-Language Communication

7.8.1 Reconciling Differences in Argument Passing

Pascal usually passes arguments by reference, while C usually passes them by value. In or­
der to pass arguments by reference correctly, you must declare your parameters in C to be
pointers so that they can take the addresses Pascal passes in. The examples in the follow­
ing sections demonstrate how to do this.

If you want to pass your Pascal arguments by value, you must use the val_param or
c_param routine option in your procedure or function heading. See the "val.J'aram-Ex­
tension" and "c .J'aram-Extension" sections of Chapter 5 for more details about these rou­
tine options.

7 .8.2 Case-Sensitivity Issues

When the Domain Pascal compiler parses a program, it makes all identifier names lower­
case, regardless of the way you type the names in your source code. In contrast, the 00-
main/C compiler is case sensitive.

It is important to understand this when you are calling C from Pascal. In order to make
identifier names match up at bind time, you should always use lowercase letters in your C
subprograms. That way, they will match the always-Iowercased identifier names in the Pas­
cal program.

7.8.3 Using Registers

By default, a Pascal function returning the value of a pointer type variable puts that value
in address register AO, whereas, by default, C routines return values in data register DO. If
you want to pass variables through registers, you should use the dO_return routine option
for Pascal routines that call C routines. The dO_return option tells the compiler that any
routines called by the routine with the dO_return option should return values to the DO
register. See the "dO_return-Extension" section of Chapter 5 for details about this rou­
tine option.

External Routines and
Cross-Language Communication 7-29

7.9 Data Type Correspondence for Pascal and C

Before you try to pass data between Domain Pascal and Domain/C, you must understand
how Pascal data types correspond to C data types. Table 7-2 lists these correspondences.

Table 7-2. Domain Pascal and Domain/C Data Types

Domain Pascal Domain/C

char char
integer, integer16 short
integer32 int, long
real, single float
double double
enumerated types enum
record struct
variant record union
pointer(A) pointer(*)

boolean none
set none

[byte] 0 .. 255 unsigned char
0 .. 65335 unsigned short
O . .4295967295 unsigned long

As the table shows, the integer, real, and character data types in both languages corre­
spond very well. For example, Pascal's integer16 data type is identical to C's short data
type, and a double variable in Pascal is the same as a double in C.

However, there are some important differences. Domain/C has no equivalent types for Pas­
cal's boolean or set types, although you can simulate these types.

7.9.1 Passing Integers and Real Numbers

Since the Pascal and C integer and real data types match up so well, it is fairly easy to
pass data of these types between the two languages. Make sure that all arguments agree in
type and size, either by declaration or by casting.

Figure 7-14 shows a Pascal program that solicits the values for two sides of a right triangle.
It then sends those values into the C function shown in Figure 7-15, which computes and
returns the length of the hypotenuse. The arguments for the triangle's sides are 32 bits
each, while the result is 64 bits.

External Routines and
7-30 Cross-Language Communication

{**}
PROGRAM pas_to_c_hypo;
{ NOTE: You must also obtain the C program named "hypot_c". }
{ After compiling pas_to_c_hypo and hypot_c, you must }
{ bind them together. }
{ This program passes two real arguments to a C function. }

VAR
legl, leg2 : single;

function hypot_c(in out legl, leg2 single) double; extern;

BEGIN

writeln('This program calculates the hypotenuse of a right triangle ');
writeln ('given the length of its two sides.');
write ('Enter the lengths of the two sides: ');
readln (legl,leg2);

writeln ('The triangle"s hypotenuse is: hypot_c(legl,leg2):5:2);

END.
{**}

Figure 7-14. An Example of Calling C: pas_to_c_hypo

/***/
/* This is a C function for finding the hypotenuse of a */
/* right triangle. The arguments must be declared as pointers.*/
#include <math.h>
double hypot_c(a,b)

float *a,*b;
{
double result;
result = sqrt«*a * *a) + (*b * *b»;
return(result);
}

/***/

Figure 7-15. An Example of Calling C: hypot_c

These programs are available online and are named pas_to_c_hypo and hypot_c. Follow­
ing is a sample execution of the bound program.

This program calculates the hypotenuse of a right triangle
given the length of its two sides.
Enter the lengths of the two sides: 3 4
The triangle's hypotenuse is: 5.00

External Routines and
Cross-Language Communication 7-31

7.9.2 Passing Strings

In C, the end of a string is marked by a null character. Therefore, when a Pascal routine
receives a string from C, the string probably includes a terminating null character that
needs to be stripped. Conversely, when a Pascal routine sends a string to a C function, it
should append a null character so that the C function can handle the string properly.

The simplest way to pass strings between Pascal and C routines is to use variable-length
strings on the Pascal side. You can then use the ctop procedure to strip the null character
from a C string, and the ptoc procedure to add a null character to a Pascal string.

The Pascal program in Figure 7-16 passes a variable-length string to the C function capi­
talize, shown in Figure 7-17, which converts all characters in the string to uppercase.

{**}
PROGRAM pas_to_c_strings;
{This program demonstrates how to pass variable-length strings to }
{and from C routines. }
TYPE

VAR

name varying [15] of char;
arg = array[1 .. 15] of char;

first name : name;
last_name : name;

PROCEDURE capitalize (in out first_name :arg)
BEGIN

extern;

END.

first_name := 'sherlock';
last_name := 'holmes';
write('Before calling C, this is the name:' first_name);
writeln(' ',last_name);
ptoc(first_name);
ptoc(last_name);
capitalize (first_name.body);
capitalize (last_name.body);
ctop(first_name);
ctop(last_name);
write('After calling C, this is the name:' first_name);
writeln(' , ,last_name);

{**}

Figure 7-16. An Example of Calling C: pas_to_c_stringsl

External Routines and
7-32 Cross-Language Communication

/***/
/* This function converts all characters in the string */
/* argument to uppercase */
'include <ctype.h>
void capitalize (s1)
char *s1;
{

while (*s1)
{

*s1 = toupper(*s1) ;
s1++;

}
}
/***/

Figure 7-17. An Example of Calling C: capitalize

Following is a sample execution of the bound program.

Before calling C, this is the name: sherlock holmes
After calling C, this is the name: SHERLOCK HOLMES

If you use fixed-length arrays rather than varying arrays, you need to handle the null
character explicitly. The Pascal program in Figure 7-18 sends two strings to a C routine
that prompts a user for new values and then sends the new string values back. The C
function in Figure 7-19 strips the trailing null character from the strings.

External Routines and
Cross-Language Communication 7-33

{**}
PROGRAM pas_to_c_strings2;

{ NOTE: You must also obtain the C program named "pass char". }
{ After compiling pas_to_c_strings2 and pass_char, you must }
{ bind them together. }
{ This program shows how to pass character variables to from a C }
{ routine.}

TYPE

VAR

fn array[l .. lO] of char;
In array[l .. 15] of char;

first_name fn;
last_name In;

procedure pass_char(in out first name
in out last_name

BEGIN
first_name := 'Sherlock';
last_name := 'Holmes';

fn;
In); extern;

write('Before calling C, the name is first_name:-l,' ');
writeln(last_name:-l);
pass_char (first_name , last_name);
write('After calling C, the name is' first_name:-l,' ');
writeln(last_name:-l);
END.
{**}

Figure 7-18. An Example of Calling C: pas_to_c_strings2

External Routines and
7-34 Cross-Language Communication

/**/
/* NOTE: You must also get the Pascal program named pas_to_strings2. */
/* After compiling pas_to_c_strings2 and pass_char, you must */
/* bind the two together. */
#include <stdio.h>

/* This C function takes two strings, prompts the user for new values,*/
/* and strips off the null characters before sending the strings back.*/

pass_char (first_name, last_name)
char *first_name, *last_name;

{
short i, j;
char hold_first [10] , hold_last [15] ;
printf ("\nEnter the first name and last name of a detective: It);

scanf ("%s%s", hold_first, hold_last);

/* Strip off the null character C automatically appends to any string */
/* and blank out any previously used places in the name strings. */
for (i = 0; hold_first [i] != '\0'; i++)

first_name[i] = hold_first[i];
for (j = i; j < 10; j++)

first_name[j] = ' ';
for (i = 0; hold_last[i] != '\0'; i++)

last_name[i] = hold_last[i];
for (j = i; j < 15; j++)

last_name[j] = ' ';
}
/**/

Figure 7-19. An Example 0/ Calling C: pass_char

These programs are available online and are named pas_to_c_strings2 and pass_char.
Following is a sample execution of the bound program.

Before calling C, the name is Sherlock Holmes
Enter the first name and last name of a detective: Jane ~arple
After calling C, the name is Jane Marple

External Routines and
Cross-Language Communication 7-35

7.9.3 Passing Arrays

Single-dimensional arrays (except for boolean arrays) of the two languages correspond
fairly well. The major difference is that in C, array subscripts always begin at zero, while
Pascal allows the programmer to determine the subscript at which the array begins. In or­
der to make arrays match up, you should define your Pascal subscripts to begin at zero.
For example:

In Domain Pascal In DomainlC

x - array[0 .. 9] of char char x[10]
x - array[0 .. 49] of integer short x[50]
x = array[0 .. 19] of single float x[20]

With such declarations, the following code fragments access the identical elements in an
array:

In Domain Pascal

for i := 0 to 9 do
my_array[i] := i;

In DomainlC

for (i = 0; i < 10; i++)
my_array[i] i;

As described earlier, Pascal by default passes arguments by reference, so when it sends an
array argument to a routine, it actually is sending the address of the first element in the
array. C gets that address when you declare the array variable in C to be a pointer. This
means you don't have to specify the size of a single-dimensional array that your C subpro­
gram receives from Pascal.

That is, if your Pascal program includes the following-

type
x = array [0 .. 9] of integer32;

var
my_array : x;

your C routine heading can look like this:

pass_array (my_array)
long *my_array; I*Notice that there's no indication of the

array's dimensions. *1

The example in Figure 7-20 and Figure 7-21 shows a Pascal program that loads five user­
entered scores into a single-dimensional array and then sends that array to a C prpcedure
to compute the average. Notice that the argument size determines the dimension of the
array; the C declaration of the array contains no dimensioning information.

External Routines and
7-36 Cross-Language Communication

{**}
pas_to_c_arrays; PROGRAM

{ NOTE:
{
{

You must also obtain the C program named "single_dim". }
After compiling pas_to_c_arrays and single_dim, you must}
bind them together. }

{ This program passes a one-dimensional array to a C routine.
TYPE

VAR
scores

grades
i, j
result
size

procedure

BEGIN

array [0 .. 4] of integer;

scores;
integer;
single;
integer := 5;

single_dim(out result
in size
in grades

single;
integer;
scores); extern;

}

writeln ('Enter', size:!, ' integer test scores separated by spaces.');
for i := 0 to 4 do

read(grades[i]);
readln;
sing1e_dim(resu1t, size, grades);
writeln ('C computed the average of the test scores, and it is:

result:5:2);
END.
{**}

Figure 7-20. An Example of Calling C: pas_to_c_arrays

1**1
I*NOTE: You must also get the Pascal program named pas_to_c_arrays *1
1* After compiling pas_to_c_arrays and single_dim, you must bind *1
1* them together. *1
1* This function computes the average of an array of integers. *1

sing1e_dim(resu1t,size,grades)
float *resu1t;
short *size, *grades;

{
short i,tota1;
total = 0;
for (i = 0; i < *size; i++)

total += grades[i];
*resu1t = total I 5.0;
}

1* Add up array values *1
1* and then compute *1
1* average. *1

1**1

Figure 7-21~ An Example of Calling C: single_dim

External Routines and
Cross-Language Communication 7-37

These programs are available online and are named pas_to_c_arrays and single_dim. Fol­
lowing is a sample execution of the bound program.

Enter 5 integer test scores separated by spaces.
85 92 100 79 96
C computed the average of the test scores, and it is: 90.40

Multidimensional arrays in the two languages also correspond fairly well. Both languages
store such arrays in the same order; that is, the rightmost subscript varies fastest. So these
two arrays would be stored identically:

In Domain Pascal In DomainlC

x = array[0 .. 1,0 .. 2] of integer32; long *x[2] [3] ;

7.9.4 Passing Pointers

Passing pointers between Pascal and C is fairly straightforward. In both cases, pointers are
4-byte entities. The example in Figure 7-22 and Figure 7-23 shows a simple linked-list
application. The Pascal program creates the first element of the list and then calls the C
routine append to add new elements to the list. The routine printlist is a Pascal routine
that prints the entire list. In addition to illustrating how to pass pointers, this example also
shows the correspondence of Pascal records to C structures.

External Routines and
7-38 Cross-Language Communication

{**}
PROGRAM pas_to_c_ptrs;

{This program calls an external C function that appends an item}
{to a linked list. The program then prints the contents of the}
{list. You must also compile the C module append and bind it }
{with pas_to_c_ptrs in order to obtain an executable file. }

TYPE
link "'list;
list record

data : char;
p : link;
end;

VAR
last let
val
base, first

char := 'z';
char;
link;

PROCEDURE append (in base: link;
in val: char); EXTERN;

PROCEDURE printlist;
{printlist prints the data in each member of the linked list }
BEGIN
while base <> nil do

begin
writeln(base data);
base: =base'" . p ;
end;

END;

BEGIN {main program}
base:=nil;
new(first);
first data := 'a';
first p := base;

base := first;
val : = 'b';
append (base,val);

{Assign to first element of the list }
{The first element is also the last so }
{set the pointer to nil }
{Base points to the beginning of the list }

append(base, last_let);
printlist; {Call procedure to print contents of list.}
END. {main program}

{**}

Figure 7-22. An Example of Calling C: pas_to_c_ptrs

External Routines and
Cross-Language Communication 7-39

/**/
/* C function that appends items to a linked list. */

#module pass_pointers_c
#include <stdio.h>

typedef struct
{
char data;
struct list *next;
} list;

void append (base, val)
list **base;
char *val;

{
list *newdata, *last_rec;

/* Note extra level of indirection */
/* because arguments are passed by */
/* reference */

last_ree = *base; /* Point temp variable last_rec at */
/* the beginning of the list. */

newdata = (list*)malloc(sizeof(list»;
/* Allocate memory for new element. */

while (last_rec->next != NULL)
last_rec = last_rec->next;

last_ree->next = newdata;
newdata->data *val;
newdata->next = NULL;

}

/* Walk to the end of the list. */

/* Add new data. */

/**/

Figure 7-23. An Example of Calling C: append

These programs are available online and are named pas_to_c_ptrs and append. If you
compile and bind the programs, and execute the result, you get this output:

a
b
z

7.9.S Passing Procedures and Functions

You may pass a Pascal procedure or function as an argument to a C function. The Pascal
program shown in Figure 7-25 passes a function, an unsorted array, and the size of the
array to a C function. The function being passed can be either ascend, which compares
two integers for an ascending sort, or descend, which compares two integers for a descend­
ing sort. The C function sort_array calls one of the two Pascal functions when it sorts the
array.

External Routines and
7-40 Cross-Language Communication

C expects function arguments to be passed by value. Therefore, the Pascal program de­
clares the first parameter of the C function sort_array to be a function, and declares the
C function with the c_param option. This use of c_param makes Pascal pass the other
parameters by value as well, so that the C function does not declare them as pointers.
(See Section 5.5.12 for information about c_param.)

Figure 7-24 shows the C function.

/**/
/* NOTE: Program name is "sort_array_c". You must also

* obtain the C program named "pass_func_to_c_p".
* After compiling pass_func_to_c_p and sort_array_c,
* you must link them together.
*/

void sort_array(int (*compare)(), int size, int list[])
{

}

do {
out_of_order = 0;
for (i = 0; i < size-I; i++)

if (compare(list[i], list[i+l]» {
out_of_order = 1;

}

temp = list[i];
list[i] = list[i+l];
list[i+l] = temp;

} while (out_of_order);

/**/

Figure 7-24. An Example of Calling C: sort_array_c

External Routines and
Cross-Language Communication 7-41

7-42

{**}
program pass_func_to_c_p(input,output);

{ Program name is "pass_func_to_c_p". To execute }
{ this program, you must also obtain the C program named }
{ "sort_array_c". After compiling pass_func_to_c_p and }
{ sort_array_c, you must link them together. }

const
SIZE = 10;

type
arrtype = array [1 .. SIZE] of integer32;

var
direction, i : integer32;
intarr : arrtype := [27, 19, 34, 65, 7, 9, 2, 12, 75, 1];

procedure sort_array(function compare (a, b : integer32)
integer32;

function ascend(a, b
begin

if a > b then
ascend .- 1

else
ascend .- 0;

end;

function descend(a, b
begin

if b > a then
descend .- 1

else
descend .- 0;

end;

begin

size : integer32;
in out list: arrtype);

options (c_param, extern);

integer32) : integer32;

integer32) integer32;

writeln('Enter 1 to sort in ascending order, '
'2 to sort in descending order: ');

readln(direction);
if direction = 1 then

sort_array (ascend, SIZE, intarr)
else

sort_array(descend,SIZE, intarr);
for i := 1 to SIZE do

writeln(intarr[i]);
end.
{**}

External Routines and
Cross-Language Communication

You can compile, link, and execute the program as follows:

$ pas pass_func_to_c_p.pas
No errors, no warnings, no info msgs, Pascal compiler 6SK ...
$ Ibin/cc -c sort_array_c.c
$ bind pass_func_to_c_p.bin sort_array_c.o -b pass
All Globals are resolved.
$ pass
Enter 1 to sort in ascending order, 2 to sort in descending order:
2

75
65
34
27
19
12

9
7
2
1

7.9.6 Data Sharing Between C and Pascal

There are two ways to declare global variables in Pascal and C so that the linker can re­
solve references:

• Declare the variables so that they are placed in the .data or .bss sections.

• Declare the variables so that they are placed in named overlay sections.

We describe these two methods in the following sections.

7.9.6.1 Declaring .data and .bss Global Variables

When you use define to define an external variable, the compiler places that variable in
the .data section of the the object file. When you declare a variable as extern, that vari­
able is listed as an unresolved reference in the symbol table. If you want these global vari­
ables to be compatible with global variables in C programs, you must compile with Ibin/cc
or use the -bss switch with Icom/cc.

There are several scenarios for declaring and defining variables in Pascal and C. The
three most common are described below:

• Define a variable in Pascal and allude to it in C. For example, the Pascal
source file might contain the following:

VAR x: DEFINE INTEGER32 .- 0;

and the C file would contain:

extern int x;

External Routines and
Cross-Language Communication 7-43

In this case, the definition in the Pascal module causes the compiler to allocate
space for x in the .data section. The C declaration produces an undefined refer­
ence to x in the symbol table, which is resolved by the linker.

• Define a variable in C (initialized) and allude to it in Pascal. For example,
the C file would contain:

int x = 10;

and the Pascal source file would declare x as:

VAR x: EXTERN INTEGER32;

In this case, the definition of x in the C module forces the C compiler to allocate
space for x in the .data section. The declaration of x in the Pascal file causes
the compiler to produce an undefined reference to x in the symbol table, which is
resolved by the linker.

• Define a variable in C (uninitialized) and allude to it in Pascal. For example,
the C file would contain:

int x;

and the Pascal source file would declare x as:

VAR x: EXTERN INTEGER32;

In this case, the un initialized definition of x in the C module causes the C com­
piler to make a "weakly defined" entry in the symbol table. The declaration of x
in the Pascal file causes the compiler to produce an undefined reference to x in
the symbol table. The linker then places x in the . bss section, initialized to zero,
and resolves the Pascal reference.

It is also possible to define the same variable in C and in Pascal, as long as only one or
neither of the definitions contain initializers. If both definitions contain initializers, the
linker will report an error.

In the following example, we define the global variable xx at the top of the C source file;
the function mainO prints the initial value of xx and then calls the C routine add_threeO
which adds 3 to xx; finally, add_three calls the Pascal procedure sub_two which sub­
tracts 2 from xx.

The Pascal routine is:

PROCEDURE sub_two;
VAR

xx : EXTERN INTEGER32;

BEGIN
xx := xx - 2;
WRITELN('Value of xx after sub_two():' ,xx);

END;

External Routines and
7-44 Cross-Language Communication

The C routines are:

#module global_var_c
#include <stdio.h>

int xx = 1;
int maine void
{

/* Definition of xx */

extern void add_three(void);

}

printf("Initial value of xx: %<i\n", xx);
add_three();

void add_three(void)
{

extern void sub_two(void);
xx += 3;
printf ("Value of xx after add_three 0: %d\n", xx);
sub_two 0 ;

}

The result of executing the program is:

Initial value of xx: 1
Value of xx after add_three(): 4
Value of XX after sub_two(): 2

7.9.6.2 Creating Overlay Data Sections

Both C and Pascal have syntaxes that enable you to produce named overlay sections for
global data. Since the binder ensures that overlay sections with the same name refer to
the same memory locations, this mechanism enables you to share data across procedures.

In Pascal, you create an overlay section with the syntax:

VAR (section_name)
declaration
declaration

For instance, the following statements define an overlay section called example with two
variables:

VAR (example)
x INTEGER16;
y : DOUBLE;

External Routines and
Cross-Language Communication 7-45

In C, there are two ways to create overlay sections. If you use the Icornlcc compiler, you
can create an overlay section simply by defining an external variable. All external variables
are automatically stored in their own named sections. For instance, if compiled with
Icomlcc, the declarations shown below create three overlay sections called first_sec,
second_sec I and example.

int first_sec=O;
float second_sec=1.0;
struct {

mainO
{

short x;
double y;
} example;

Note that example contains two variables: x and y.

If you compile your program with Ibinl cc, you need to use a special
__ aUribute« __ section» syntax to create a named overlay section:

int first_sec __ attribute« section(first sec) » = 0;
float second_sec __ attribute« __ section (second_sec) » = 1.0;
struct {

mainO
{

short x;
double y;
} example __ attribute« __ section (example) »;

See the DomainlC Language Reference for details about this attribute.

----88----

External Routines and
7-46 Cross-Language Communication

Chapter 8

Input and Output

Domain Pascal supports the following three methods of performing I/O:

• Input/Output Stream (lOS) calls

• Variable format (VFMT) calls

• Predeclared Domain Pascal I/O procedures

In general, you can perform all your I/O with the predeclared Domain Pascal I/O proce­
dures. However, the other two methods can be very useful in certain circumstances.

This chapter provides a brief overview of all three methods, along with some background
information that may aid you in whatever method you choose.

8.1 Some Background on Domain 1/0

This section describes some information that may be helpful in understanding how I/O
works on the Domain system. It's only a brief sketch; the full details are published in
Programming with Domain/OS Calls. Before we describe the mechanics of Domain I/O, we
provide a brief description of lOS calls and VFMT calls.

8.1.1 Input/Output Stream (lOS) Calls

lOS calls are system calls that perform I/O. You can easily make lOS calls from your Do­
main Pascal program. lOS calls can:

• Create a file

• Open or close a file

Input and Output 8-1

• Write to or read from a file

• Change a file's attributes (a file's attributes include name, length, type UID, acces­
sibility, etc.)

• Access magnetic tape files or serial lines

lOS calls are more primitive than the predeclared Domain Pascal 1/0 procedures. Conse­
quently, they give you more control over 1/0, but they are harder to use. Therefore, for
simple 1/0 needs you are probably better off using the predeclared Domain Pascal 1/0 pro­
cedures. If you want to do something out of the ordinary, then you will most likely need to
use lOS calls.

See Programming with Domain/OS Calls for details about lOS.

8.1.2 VFMT Calls

VFMT (variable format) calls are special system calls that format input and output. Since
the Pascal language does not support elaborate formatting features, you may find it useful
to make a VFMT call in situations such as the following:

• A variable contains a hexadecimal value and you wish to prompt your user with its
ASCII equivalent.

• You want to tabulate results in fixed columns using scientific notation.

• You need to parse an input line without worrying about whether the user separates
the arguments with spaces or semicolons.

VFMT is a set of tools for converting data representations between formats.

VFMT performs two classes of operations-encoding and decoding. Encoding means taking
program-defined variables and producing text strings that represent the values of the vari­
ables, in a format that you specify. These encoded values are then often written to output
for viewing. Decoding means taking text (typically typed by the user), interpreting it in a
way that you specify, and storing the apparent data values in program-defined variables.

8-2 Input and Output

The VFMT calls allow you to format the following kinds of data:

• ISO Latin-1 characters, including ASCII characters

• 2-byte or 4-byte integers interpreted as signed or unsigned integers in octal, deci­
mal, or hexadecimal bases

• Single- and double-precision reals in floating-point and scientific notations

This includes the following Domain Pascal data types: char, integer16, integer32, single,
and double.

See Programming with Domain/OS Calls for details about VFMT calls.

The remainder of this section is devoted to explaining certain aspects of Domain I/O that
you may find useful.

8.1.3 File Variables and Stream IDs

All of the predeclared Domain Pascal I/O procedures take a file variable as an argument.
The file variable is a synonym for a temporary or permanent pathname to the file. If you
are using lOS calls rather than the Domain Pascal I/O procedures, you refer to a pathname
by its lOS ID rather than by its file variable. A stream ID is a number assigned by the op­
erating system when you open a file or device. Since Domain Pascal I/O procedures in
your source code ultimately translate to lOS calls at run time, a file variable in your source
code becomes a lOS ID at run time. The system can support up to 128 I/O streams per
process.

8.1.4 Default Input/Output Streams

Every process starts out with the I/O streams shown in Table 8-1. Domain Pascal deals in
file variables, not lOS IDs, so the table also shows the names of the file variables corre­
sponding to these streams. You need not explicitly declare these; the system opens these
streams automatically as described in the next subsection.

Input and Output 8-3

Table 8-1. The Default Streams

Stream Name File Variable Name

Input

Output

Description

If you do not explicitly specify a file
variable for a Domain Pascal input
procedure, the compiler reads from
input. By default, input is the process
input pad, but you can redirect this
stream with the < character. *

If you do not explicitly specify a file
variable for a Domain Pascal output
procedure, the compiler assumes out­
put. By default, the system associates
this stream with the process transcript
pad, but you can redirect this stream
with the > character. *

Domain Pascal sends errors to this
stream. By default, this is the tran­
script pad, but you can redirect this
stream with the >? character se­
quence. *

*Getting Started With Domain/OS explains how to redirect I/O.

8.1.5 Interactive 110

Domain Pascal uses the following system for interactive processing of the standard input
(input) and standard output (output) files. Domain Pascal does not actually open input
and output until the program first refers to them. When Domain Pascal finds the first ref­
erence to input in your program, it calls reset (input) . Reset expects to fill the file buffer
variable with the first char of a text file, which means that reset (input) can cause a re­
quest for input.

For example, consider the following program:

PROGRAM lazy;
VAR

c : char;
BEGIN
while not eof(input) do

begin

{This program is WRONG!}

write('enter a letter or an EOF --');
readln(c);
end;

END.

8-4 Input· and Output

If you run this program, you might expect results like the following:

enter a letter or an EOF -- A
enter a letter or an EOF -- Z
enter a letter of an EOF -- <EOF>

However, in reality, the program does not produce those expected results. That's because
the first reference to input is in the eof function. This causes the system to perform a
reset (input) prior to the test for eof. Reset expects to fill the file buffer, so the test for
eof actually results in a request for input, for which, unfortunately, the user is not
prompted. Therefore, running the program results in the following:

A {here the user is required to enter input for which he/she is not prompted} I
enter a letter or an EOF -- Z
enter a letter or an EOF -- <EOF>

To eliminate this problem, you must take advantage of a feature of reset known as de­
layed access. Delayed access means that data will not be supplied to fill the input buffer at
the reset, but rather at the next reference to the file. Since reset initiates delayed access,
and since eof and eoln cause the file buffer to be filled, you must place the first prompt
for input before any tests for eof or eoln. The data you enter in response to the prompt is
retained until you make another reference to the input file.

The following shows how to use delayed access to make the previous example work cor­
rectly:

PROGRAM interactive;
VAR

c : char;
BEGIN
write ('enter a letter or an EOF -- ');
while not eof(input) do

END.

begin
readln(c) ;
write ('enter a letter or an EOF -- ');
end;

8.1.6 Stream Markers

When you open a file, the operating system assigns a stream marker to the file. A stream
marker is a pointer that points to the current position inside the open file. As you read
from or write to the file, the operating system moves the stream marker forward in the file.
The stream marker points to the byte (or record) that the system can next access. When
you open the file with the Domain Pascal open procedure, the stream marker initially
points to the beginning of the file. Using lOS calls, you can open the file with the stream
marker initially pointing to the end of file so that you can append to the file.

Input and Output 8-5

If you are using lOS calls, you directly control the stream marker. If you are using Domain
Pascal I/O procedures, you control the stream marker indirectly through the procedures
you call.

8.1.7 File Organization

Although Domain/OS supports a variety of file types, the standard I/O library and UNIX
functions allow you to access only ASCII files. These are files that consist of a string of
ASCII characters. (The Domain Pascal ISO Latin-l character set includes these charac­
ters.) You can create your own records within such a file by entering a delimiting charac­
ter, but there is no predefined record structure. Also, you can read and write bytes in
numeric rather than string formats, but it is your responsibility to keep track of how data is
represented.

The default file type created by Domain/OS is unstruct. An unstruct file is an ordinary
text file that is fully compatible with text files produced by programs compiled under a
UNIX system. The system stores a text file consisting of ASCII characters. The operating
system makes no attempt to organize or structure the data in a text file. That is, '908' is
stored in the three bytes it takes to hold the ASCII values of digit '9', digit '0', and digit
'8', rather than structuring it into the value of integer 908.

By default, the maximum length of each line of a text file that Domain Pascal opens is 256
characters. You can change this to a larger length by using the optional buffer_size pa­
rameter with the open statement. (See the listing for "Open" in Chapter 4 for details
about the buffer_size parameter.) By "line", we mean all the characters between two
end-of-line characters. No text file can have more than 32767 lines.

8.2 Predeclared Domain Pascal lID Procedures

The encyclopedia of Domain Pascal code in Chapter 4 details the syntax of each of the
predeclared Domain Pascal 110 procedures. This section provides a global view of these
procedures.

8.2.1 Creating and Opening a New File

You can create a permanent file or a temporary file. The operating system deletes a tem­
porary file as soon as the program that created it ends. Permanent files last beyond pro­
gram execution. In fact, they last until you explicitly delete them.

To create a permanent file, you call the open procedure and specify 'NEW' as the
file_history. This not only creates the file, but opens it for future access as well.

To create a temporary file, you call the rewrite procedure.

8-6 Input and Output

Both open and rewrite take a file or text variable as an argument. In either case, Domain
Pascal creates an unstruct file. If the file variable has the file data type, however, you can
only read and write objects that have the file's base type. For text type files, you can ac­
cess each byte one at a time.

NOTE: Pre-SR10 versions of Domain Pascal created special record struc­
tured Domain files (called rec files) when you opened a file. For
compatibility with older versions, you can use the current version
of Domain Pascal to manipulate rec files, but you can no longer
create rec files. When you open an existing file, Domain Pascal
checks whether it is a rec or unstruct file and accesses it appro­
priately. Whenever you open a new file, however, Domain Pascal
creates an unstruct file.

8.2.2 Opening an Existing File

To open an existing file for future access, you call the open procedure and specify either
'OLD' or 'UNKNOWN' as the file_history.

Note that you do not have to explicitly open the shell transcript pad. It is already open.
(See the "Default Input/Output Streams" section earlier in this chapter for details.)

8.2.3 Reading from a File

In order to read from an open file, you must call the reset procedure. Reset tells the sys­
tem to treat the open file as a read-only file. You can change the open file to a write-only
file with the rewrite procedure.

After calling reset, you are free to call any or all of the three input procedures that Do­
main Pascal supports, namely, read, readln, and get. All three procedures read informa­
tion from the specified file and assign it the specified variable(s).

Input and Output 8-7

The following list describes the differences among the three procedures:

• Get can access both file type files and text type files. Use it to assign the contents
of the next record or character in a file to a file buffer variable.

• Read can access both file type files and text type files. Use it to read information
from the specified file into the given variables. After reading a record (if a file
type file) or a character (if a text type file), read positions the stream marker to
point to the next record or character in the file.

• Readln can access text type files only. It is similar to read except that after read­
ing the information, readln sets the stream marker to the character immediately
after the next end-of-line character.

It is often useful to know when the stream marker has reached the end of the line or the
end of the file. You can use eoln to test for the end of line, and eof to test for the end of
file.

Domain Pascal supports the find procedure as an extension to standard Pascal. Use it to
set the stream marker to point to a particular record in a file type file. This procedure
permits you to skip randomly through a file type file, while the other read procedures im­
ply a sequential path.

8.2.4 Writing to a File

In order to write to a file, you must call the rewrite procedure. (If you used rewrite to
open a temporary file, then you don't have to call rewrite again.) The rewrite procedure
tells the system to treat the open file as a write-only file. You can read from this file only
if you call reset.

Once the file has been opened for writing, you can call any of these four standard Pascal
output procedures: write, writeln, put, and page. Write, writeln, and put are the output
mirrors to read, readln, and get. Using write, writeln, or put causes Domain Pascal to
write the specified information from the specified variable(s) to the specified file.

Here are the differences among the four procedures:

• Put can access both file type files or text type files. Use it to assign the contents
of the file buffer variable to the next file position, causing the contents to be writ­
ten to the file.

• Write can access both file type files and text type files. Use it to write informa­
tion from the specified variables into the specified file. After writing a record (if a
file type file) or character (if a text type file), write positions the stream marker
to point to the next record or character in the file.

8-8 Input and Output

• Writeln can access text type files only. It is similar to write except that after writ­
ing the information, writeln sets the stream marker to the character immediately
after the next end-of-line character.

• Page can access text type files only. Use it to insert a formfeed (page advance)
into the file.

In addition to the standard Pascal output procedures, Domain Pascal also supports the re­
place procedure. Use the replace procedure to substitute a new record for an existing re­
cord in a file type file. The replace procedure has the distinction of being an output pro­
cedure that you can call only when the file has been open for input. In other words, be­
fore you call replace, you must first call open and reset to open the file for reading. The
replace procedure is usually used with find. Use find to skip through a file type file look­
ing for a particular record, then use replace to modify the record in its place.

8.2.5 Closing a File

When a program terminates (naturally or as a result of a fatal error), the operating system
automatically "closes" all open files. "Closing" means that the operating system unlocks
the file. When the operating system closes a file type file, it automatically preserves any
changes made to the file. However, when the operating system closes a text type file that
was open for output, there is a possibility that some modifications won't be preserved. To
ensure that all modifications are kept, make sure that the last output operation on the file
is a writeln.

Domain Pascal supports a close procedure whose purpose is to close a specified open file.
Since the operating system does this automatically at the end of the program, you ordinar­
ily don't have to call close. However, it is good programming practice to close all open
files as soon as your program is finished using them. Open files tie up process resources
and may cause your program to needlessly lock a file that another program wants to ac­
cess.

-------88-------

Input and Output 8-9

Chapter 9

Diagnostic Messages

The majority of this chapter is devoted to detailing compiler errors, warnings, and informa­
tion messages. However, we start this chapter with a discussion of the errors reported by
the predeclared procedures open and find, and we end with a discussion of run-time error
messages.

9.1 Errors Reported by Open and Find

The open and find procedures are the only two predeclared Domain Pascal routines that
return an error status parameter. This parameter tells you whether or not the call was
successful. If the call was successful, the operating system returns a value of 0 in the error
status parameter. If the call was not successful, the operating system returns a number
denoting the error. Your program is responsible for handling the error. You may wish to
print the error and terminate execution. Or, you may wish to code your program so that it
can take appropriate action when it encounters an error.

This error status parameter is identical to the error status parameter returned by all system
calls. This is more than coincidental since open and find are executed as stream calls at
run time. In the next section, we summarize the error status parameter as it relates to the
open and find procedures. For complete details on using the error status parameter, refer
to Programming with Domain/OS Calls.

Diagnostic Messages 9-1

9.1.1 Printing Error Messages

To print an error message generated by an errant open or find, you must do the following:

• Put the following two include directives in your program just after the program
heading:

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';

Make sure you put base.ins.pas before error.ins.pas.

• Declare the error status parameter with the status_$t data type; for example,

VAR
err stat: status St;

- {status_St i~ declared in base.ins.pas}

• Specify the error status parameter as the all field of the error status variable; for
example,

OPEN(f, pathnamel, 'NEW', err_stat.all);

• Call the error_Sprint procedure with the error status parameter as its sole argu­
ment; for example,

error Sprint(err stat);
{The-error_$print procedure is defined in error.ins.pas}

The following program puts all the steps together:

Program test;

%INCLUDE '/SYS/INS/BASE.INS.PAS';
%INCLUDE '/SYS/INS/ERROR.INS.PAS';

VAR

BEGIN

text;
status_St;

OPEN(f, 'grok', 'OLD', err_stst.all);
Error_$print(err_stat);

END.

The error_Sprint procedure writes the error or warning message to stdout. If there is no
error or warning, error _ Sprint writes the following message to stdout:

status 0 (OS)

9-2 Diagnostic Messages

9.1.2 Testing for Specific Errors

The previous subsection introduced the status_$t data type and its all field. This section
describes another field in status_$t-the code field. The code field of status_$t contains
a number that corresponds to a particular error. To test for a specific error, compare this
code field against expected errors. Table 9-1 lists the common error codes returned by
open and Table 9-2 lists the common error codes returned by find. The symbolic names
come from the Isys/ins/ios.ins.pas file. To use these symbolic names, all you have to do is
list this file as an include file.

Table 9-1. Common Error Codes Returned by open

Code Symbolic Name Cause of Error

1 ios_$not_open You specified a file_history of 'NEW', but the
pathname existed. Alternatively, the type
UID of this existing file differed from the
type UID of the file you were trying to open.

14 ios _ $already _exists You specified a file_history of 'NEW', but the
pathname already exists.

21 ios_$name_not_found You specified a file_history of 'OLD', but the
pathname does not exist.

28 ios _ $object _ not_found You specified a file_history of 'OLD', but the
operating system cannot locate the disk
containing the pathname (indicates network
problems.)

45 ios_$insufficient_rights The ACL of the pathname prohibits you from
opening the file.

Table 9-2. Common Error Codes Returned by find

Code Symbolic Name Cause of Error

1 ios_$not_open You called find, but without the file being
open.

9 ios_$end_of_file You specified a record number greater than
the number of records in the file.

Diagnostic Messages 9-3

For example, consider the following program fragment, which tries to first open pathname
my_bookl. If this pathname exists, the program then attempts to open pathname
my_book2.

Program test;
~INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
~INCLUDE '/sys/ins/ios.ins.pas';

VAR
fl, f2
st

BEGIN

text;
status_$t;

open(fl, 'my_bookl', 'NEW', st.all);
if st. code = ios_$already_exists then

open(f2, 'my_book 2' , 'NEW', st.all);

9.2 Compiler Error, Warning, and Information Messages

When you compile a program, the compiler reports errors, fatal errors, warnings, and in­
formation.

A fatal error indicates a problem severe enough to stop compiler execution.

An error indicates a problem severe enough to prevent the compiler from creating an exe­
cutable object file.

A warning is less severe than an error; a warning does not prevent the compiler from cre­
ating an executable object file. The warning message tells you about a possible ambiguity
in your program for which the compiler believes it can generate the correct code.

Information messages do not prevent the compiler from creating an executable object file.
The purpose of the information messages is to alert you to ways in which you could im­
prove the quality of your code. Information messages tell you about the following types of
things:

• Alignment of variable and type definitions

• Actions taken by the optimizer

See the "-info nand -ninfo: Information Messages" section of Chapter 6 for more details
about information messages.

The following pages list the common Domain Pascal compiler error, fatal error, warning,
and information messages, and suggest ways to handle them.

In addition, remember the cardinal rule of Pascal debugging: look for missing semicolons.
For example, suppose the compiler reports an error at line 50, but line 50 appears to be a
correct statement. It's quite likely that you forgot a semicolon at line 49.

9-4 Diagnostic Messages

9.2.1 Error, Fatal Error, Warning, and Information Message Conventions

The error, warning, and information messages listed in the rest of this chapter follow these
conventions:

• Keywords in the message text are all capitals, since that's the way they appear on
your screen. In the accompanying explanatory text, they are lowercase bold, as
they are elsewhere in this manual.

• Italicized words in the message text indicate values that the compiler fills in when
generating the message. For example, suppose your program contains the follow­
ing:

PROGRAM err_test;
VAR

num integer17;

Because the fragment includes an undefined data type (integer17), it triggers Er­
ror 23, which reads:

23 ERROR Identifier has not been declared in routine name_of_routine.

When you compile, identifier and name_of_routine are filled in like this:

(0003) num: integer17;
******** Line 3: [Error 023] INTEGER17 has not been declared in

routine err test.

9.2.2 Error, Warning, and Information Messages

1

2

3

Following are Domain Pascal's compiler error, warning, and information messages.

ERROR Unterminated comment.

You started a comment, but you did not close it, or you closed it with the wrong delimiter.
Comment delimiters must match unless you compile with the -iso switch. If you don't
compile with that switch and you start a comment with {, you must end it with }. Simi­
larly, if you start a comment with (., you must end it with .). If you start a comment
with ", you must end it with ".

ERROR Improper numeric constant.

You specified a base that fell outside the legal range of 2 to 16. For example, you cannot
specify a number in base 32. Perhaps you mistakenly specified the integer first and the
base second. (See the "Integers" section in Chapter 2 for an explanation of base.)

ERROR U nterminated character string.

You started a string with an apostrophe ('), but you forgot to end it with an apostrophe.
See Chapter 2 for a definition of string.

Diagnostic Messages 9-5

4

6

7

8

10

11

12

13

ERROR Bad syntax (token).

The compiler encountered token when it was expecting to find something else.

ERROR Period expected at end of program (symbol).

You must finish the program with an end statement followed by a period. The final char­
acter that the compiler found in your source code is symbol. Typically, symbol is IEOFI
(an end-of-file character) or a semicolon. The most frequent cause of this error is putting
a semicolon rather than a period after the final end.

ERROR Text following end of program (token).

You have put some text other than a comment after the end of the program. The phrase
"END." marks the end of the program. You can put comments after the end of the pro­
gram, but you cannot put anything else there.

ERROR PROGRAM or MODULE statement expected (token).

The first noncomment in your source code must be either a program heading or a module
heading. The compiler found token instead of a program or module heading. Domain
Pascal also issues this error when there is some sort of mistake in your program or mod­
ule heading. Chapter 2 describes the program heading. Chapter 7 describes the module
heading.

ERROR Semicolon expected at end of programlmodule statement (token).

You forgot to end your program or module heading with a semicolon. Domain Pascal en­
countered token when it was expecting a semicolon.

ERROR Improper declarations syntax (token).

Domain Pascal found an unexpected token when processing a declaration part.

ERROR Improper CONST statement syntax (token).

You made a mistake when declaring a constant. See Chapter 2 for the correct format.
Token is the invalid token that Domain Pascal encountered. A possible trigger for this error
is that you tried to declare two identifiers for the same constant value as in the following
example:

CONST
X,Y 5;

ERROR Improper TYPE statement syntax (token).

You made a mistake in the type declaration part of your program. Domain Pascal en­
countered token when it was expecting something else. See Chapter 2 for the correct for­
mat of the type declaration part. A possible trigger for this error is that you used the
wrong symbol to associate the identifier with its type as in the following example:

TYPE
long := integer32;

9-6 Diagnostic Messages

14

15

16

17

18

19

20

WARNING Datatype cannot be PACKED.

Domain Pascal only recognizes the packed syntax for records, arrays, sets, and file types. I
Datatype is a data type that the compiler doesn't recognize when used with packed. Note
that packed only economizes space when used before array and record declarations.

ERROR Improper type specification (token).

You made some mistake when specifying a data type in the var declaration part. Token
identifies the unexpected part of the var declaration part. For example, the following dec­
laration triggers this error because r is a variable, not a data type:

VAR

r : real;
data: array[l.lO] of r;

See Chapter 2 for a complete description of the var declaration part.

ERROR Improper enumerated constant syntax (message).

All constants in an enumerated type must be valid identifiers. See Chapter 2 for a defini­
tion of identifier. Message identifies the first character or token that did not conform to
the rules for identifiers.

ERROR OF expected in SET specification (token).

When you declared a set type or set variable, you forgot to specify the keyword of in be­
tween the word set and the base type. Refer to Chapter 3 for information on declaring set
types. Domain Pascal encountered token rather than the keyword of.

ERROR Improper ARRAY specification syntax (token).

You declared an array incorrectly. See Chapter 3 for details on declaring arrays. Token is
the token that Domain Pascal encountered when it expected to find something else.

ERROR Improper RECORD specification syntax (token).

You declared a record incorrectly. See Chapter 3 for details on declaring records. Do­
main Pascal encountered token when it expected to find something else. A common trig­
ger of this error is a type declaration such as the following:

TYPE

ERROR

student = record
a integer32;
b = boolean; {cause of error.

end;
should be ':'}

Improper pointer specification (token).

You declared a pointer incorrectly. See Chapter 3 for details on declaring pointers. Do­
main Pascal encountered token when it expected to find something else. The following
type declaration triggers this error, because the up-arrow (A) can only appear before a type
name, not a type specification:

TYPE

Diagnostic Messages 9-7

21

22

23

24

25

26

29

ERROR Improper VAR statement syntax (token).

In a variable declaration, you probably forgot to specify a semicolon after the data type.
Perhaps you specified a comma instead of a semicolon, or perhaps you did not specify any
punctuation mark at all. This error also occurs if you begin an identifier with a digit (0-9)
or dollar sign ($).

ERROR Parameter list must only be specified when the procedure or function is
declared as FORWARD.

You specified the parameter list for this routine in two places: first when you specified for­
ward or extern and second in the routine heading itself. To correct this error, eliminate
the second parameter list.

ERROR Identifier has not been declared in routine name_of_routine.

Several conditions can trigger this error. You might have used identifier in the code portion
of name_of_routine without identifier being accessible to this routine. Study the "Global
and Local Variables" and "Nested Routines" sections in Chapter 2 to learn about the
scope of declared identifiers.

Another possible trigger for this error is that you tried to make a forward call to a proce­
dure without declaring the procedure with the forward attribute. (See the "Routine At­
tribute List" section in Chapter 5 for details on the forward attribute.)

This error also can occur if you specify a data type that either is invalid or that you've for­
gotten to define in the type section of your program.

ERROR Multiple declaration of identifier, previous declaration was on line line_number.

You declared identifier (which could be a data type, variable, constant, label, or routine)
more than once.

ERROR Improper MODULE structure (token).

The compiler was expecting to encounter a procedure or function declaration, but found
token instead. Remember, that unlike a program, the action part of a module must always
be contained inside a named routine.

ERROR Number of array subscripts exceeds limit of eight.

Domain Pascal supports arrays of up to eight dimensions.

ERROR Subrange bound (token) is not scalar.

You were trying to declare an array or subrange, but one of the bounds of the subrange
was not a scalar. The scalar types are integer, Boolean, char, enumerated, and subrange.
The token is the token that Domain Pascal encountered when it was searching for a scalar
expression.

9-8 Diagnostic Messages

30

31

32

33

34

35

36

37

ERROR Lower bound of subrange (lower _bound) is not of the same type as the upper
bound (upper _bound).

You were trying to declare an array or subrange, but the data type of lower _bound is not
the same data type as that of upper _bound. The types must match.

ERROR Lower bound of subrange (le/t_scalar) is greater than the upper bound (right_sca­
lar).

You were trying to declare an array or subrange, but you set the value of the left_scalar to
a higher value than the value of the right_scalar. The left_scalar must be lower than the
right_scalar.

ERROR Base type (type) of SET is not scalar.

You tried to declare a nonscalar type as the base type of a set variable or type. The scalar
types are integer, char, Boolean, enumerated, and subrange. Type is the token that Do­
main Pascal encountered instead of a scalar type.

ERROR SET elements must be positive (-).

You tried to declare a set with a base type of integer or subrange, but Domain Pascal dis­
covered a negative number in the base type.

ERROR SET exceeds limit of 1024 elements ((token). I
You cannot declare a set that exceeds 1024 elements. See the "Internal Representation of
Sets" section in Chapter 3 for details.

ERROR Improper use of (identifier), only a TYPE defined name is valid here.

The compiler was expecting a data type, but you specified an identifier instead. Possibly,
you tried to create a pointer variable with improper declarations like the following:

VAR
x integer;
y "x;

See the" Standard Pointer Type" section in Chapter 3 for details on setting up pointer
types.

ERROR Multiple declaration of variable in parameter list.

You declared variable more than once in the parameter list of a procedure or function.

ERROR PROCEDURE/FUNCTION name required (token).

You used the keyword procedure or function without specifying a valid identifier immedi­
ately after it. See the "Identifiers" section in Chapter 2 for a definition of a valid identifi­
er. Token is either the name of the invalid identifier or the null set (if you did not supply
any name at all).

Diagnostic Messages 9-9

38

39

40

42

43

ERROR Improper PROCEDURE/FUNCTION declaration (token).

You were probably confusing procedure with function. A function has a data type, and a
procedure does not; therefore, the following declaration triggers this error:

procedure one (r2 : single) : real;

ERROR Improper parameter declaration (token).

You did not specify the parameter list of your procedure or function in the correct man­
ner. A common cause of this error is using semicolons incorrectly in the parameter list.
(See Chapter 5 for details on parameter lists.) Domain Pascal encountered token when it
was expecting something else (probably a semicolon).

ERROR Colon expected in FUNCTION declaration (token).

You forgot to put a colon before the type specification of the function; for example, com­
pare the right and wrong ways to declare a function:

FUNCTION pyth_theorem(a : integer16)
FUNCTION pyth_theorem(a : integer16)

Domain Pascal found token instead of a colon.

real;
: real;

ERROR FUNCTION type specification required.

{Wrong!}
{Right }

You forgot to specify a data type for the function itself; for example, compare the right
and wrong ways to declare a function:

{wrong} FUNCTION pyth_theorem(a : integer16);
{right} FUNCTION pyth_theorem(a : integer16)

ERROR CASE type is not scalar.

real;

You specified an expression in a case statement that did not have a scalar data type. The
scalar data types are integer, Boolean, char, enumerated, and subrange. For example, the
following case statement triggers this error:

VAR
r : real;

BEGIN
CASE r OF {error: r is real, but should have been

integer or integer subrange. }
1 : writeln('One');
2 : writeln('Two');

end;

9-10 Diagnostic Messages

44

45

46

47

48

ERROR Constant is not of the correct type for the CASE on line number.

You specified a constant in a case statement that was not the same data type as the ex­
pression of the case statement. For example, the following case statement triggers this er­
ror:

VAR
r integer16;

CASE r OF
1.5 writeln('One'); {error: 1.5 is a real;

it should be integer.}
2 writeln('Two');

end;

ERROR (Constant) is outside the subrange of the CASE on line number.

In a CASE statement, you specified a constant that was not within the declared range of
the case.

For example, the following case statement triggers this error because the constant 5 is out­
side the declared subrange 0 to 3.

VAR
x : 0.3;

BEGIN
CASE x OF

5 . {error}

ERROR Constant has already occurred as a CASE constant on line number.

You specified the same constant more than once in the same case statement. For exam­
ple, the following case statement triggers this error because constant 6 appears twice:

CASE r OF
4
5,6,7
6

end;

ERROR

writeln('square root is rational');
writeln('square root is irrational');
writeln('even'); {error}

Token is not a valid option specifier.

You specified token in an OPTIONS clause, but token is not a valid option. See the "Rou­
tine Options" section in Chapter 5 for details.

ERROR Include file name must be quoted (token).

You used the %include directive but forgot to put the name of the include file in apostro­
phes. Token is the token that Domain Pascal found when it was expecting to find an apos­
trophe.

Diagnostic Messages 9-11

49

50

51

52

53

54

55

56

ERROR Too many include files.

Note that this error can be triggered by include files nested within include files. To correct
this error, you can break the program into separately compiled modules.

ERROR Token is not a recognized option.

You specified token as a compiler directive, but token is not a valid compiler directive.
Refer to the "Compiler Directives" listing in Chapter 4 for a description. Possibly, you put
an extra percent sign (%) in your program. Another possibility is that you specified token
on your compile command line as a compiler option. If you do this, the operating system
returns this error message. See Chapter 6 for a complete list of compiler options. Possi­
bly, you caused this error by trying to compile two files at once, and the compiler inter­
preted the second file as an (invalid) option.

ERROR Include file pathname is not available.

You specified a pathname for an include file, but either it does not exist or network prob­
lems prevent the compiler from accessing it.

ERROR Semicolon expected following option specifier (token).

You specified compiler directive %debug or %eject but forgot to specify a semicolon im­
mediately after the directive. See the "Compiler Directives" listing in Chapter 4.

ERROR Multiple declaration of identifier in RECORD field list.

You specified the same field twice in a record declaration. For example, the following re­
cord declaration triggers this error because x is declared twice:

r = record
x Boolean;
x : integer16; {error}

end;

ERROR Array bound type is not scalar (datatype).

You specified datatype as the index type of an array. However, datatype must be a scalar
data type. The scalar data types are integer, char, enumerated, subrange, and Boolean.

ERROR Improper LABEL statement syntax (token).

Labels must be unsigned integers or identifiers, but Domain Pascal found token instead.

ERROR Multiple definition of element, previous definition was on line number.

You declared the same element (variable, data type, constant, label, procedure, or func­
tion) twice.

9-12 Diagnostic Messages

57

58

59

60

61

62

ERROR Improper usage of identifier, only a LABEL name is valid here.

You used identifier as a label, but you had already declared it as a variable, type, or con­
stant. Possibly, you accidentally put a colon (:) immediately following the identifier in the
action part of your program. The colon could cause the compiler to interpret the identifier
as an illegal label. Perhaps you meant to specify a statement like the following:

x :== 8;

but you forgot the equal sign and ended up specifying the following instead:

x : 8;

ERROR Constant is declared as a CONST name, and cannot be assigned a value.

You mistakenly tried to assign a value to a constant. Perhaps you should have declared
constant as a variable rather than as a constant.

ERROR Improper use of identifier, only a VAR name is valid here.

You tried to assign a value to an identifier that is not a valid variable. Possibly, you tried
to assign a value to a type rather than a variable. For example, code like the following
causes this error:

TYPE
int integer32;

VAR
q int;

BEGIN
int .- 8; {wrong!}

q .- 8; {Right!}

ERROR Improper use of identifier, only a VAR or CONST name is valid here.

You tried to assign the value of a data type or label to a variable. Identifier must be a vari­
able or a constant.

ERROR Token is not an ARRA Y.

You specified an expression of the format

TOKEN [•••

This format is reserved for specifying a particular element of an array; however, token is
not an array variable. Possibly, you were trying to call a procedure or function and used
brackets rather than parentheses.

ERROR Variable is not a pointer variable.

You tried to dereference a variable that was not declared as a pointer variable. (See the
"Pointer Operations" listing of Chapter 4.)

Diagnostic Messages 9-13

63

64

65

66

67

68

69

70

ERROR Token is not a RECORD.

Domain Pascal was expecting a record variable, but it found token instead. (See the "Re­
cord Operations" listing of Chapter 4.)

ERROR Token is not a field of record.

Domain Pascal was expecting a field of the record variable, but it found token instead.

ERROR Too many subscripts to array_variable.

You declared array_variable as an n-dimensional array, but you have specified more than
n subscripts for the array at this line.

ERROR Kind_ol_declaration declaration must precede internal PROCEDURE and FUNC­
TIONS declarations.

You put a routine in the middle of a declaration part. A nested routine must come at the
end of a declaration part (not in the beginning or the middle).

ERROR Improper use of identifier, only a FUNCTION name is valid here.

You probably had no intention of calling a function and are puzzled as to why you got this
message. If you used a statement of the form

IDENTIFIER (TOKEN)

then Domain Pascal assumed that you were trying to call a function. Possibly, you were
trying to access an array, but you used parentheses instead of brackets.

ERROR The types of operand1 and op erand2 are not compatible with the operator opera­
tor.

You made a mistake such as specifying (21.0 DIV 3.0). (It's a mistake because div only
accepts integer operands.) See Chapter 4 for a complete list of operators and their valid
operands.

ERROR The type of operand is not compatible with the operator operator.

You made a mistake such as specifying an expression like:

(NOT 3.0)

It's a mistake because not only accepts Boolean operands. See the beginning of Chapter 4
for a summary of operators.

ERROR Incompatible operands [operand1, operand2] to the operator operator.

See Table 4-1 for a summary of operators.

9-14 Diagnostic Messages

71

73

74

75

77

79

81

ERROR Subscript expr to array name_oJ_array is not of the correct type.

See the" Array Operations" listing in Chapter 4.

ERROR Statement expression is not Boolean.

You were using a non-Boolean expression in a manner reserved for Boolean expressions.
For example, the following program fragment triggers this error because variable int is an
integer, not a Boolean:

VAR
int : integer;
b Boolean;

if int then .. {error, int is not a Boolean expr. }
if int=9 then .. {no error, int=9 is a Boolean expr.}
if b then .. {no error, b is a Boolean expr. }

ERROR FOR statement index variable is not scalar.

The scalar data types are integer, Boolean, char, enumerated, and subrange. If you spec­
ify an index variable with a data type other than one of these five types, Domain Pascal
issues this error. See the for listing in Chapter 4.

ERROR FOR statement initial value expression is not compatible with the index variable.

You specified a start_expression of a different data type than the index variable. See the
for listing in Chapter 4.

ERROR FOR statement limit value expression is not compatible with the index variable.

You specified a stop expression of a different data type than the index variable. See the
for listing in Chapter 4.

ERROR Assignment statement expression is not compatible with the assignment variable.

You tried to assign the value of an expression to a variable, but the data type of the value
and the variable were not compatible. In general, the data type of the expression must
match the data type of the variable; however, there are a few exceptions. For example,
you can assign an integer expression to a real variable (though you cannot do the reverse).
In most cases, this error is just a simple programming mistake, but if you do intend to as­
sign a value to a variable of a different data type, refer to the "Type Transfer Functions"
listing of Chapter 4.

ERROR Too many arguments to routine.

You attempted to call routine, but you tried to pass more arguments to routine than it was
expecting. The number of arguments cannot exceed the number of parameters declared in
the parameter list of the routine. See Chapter 5 for details on parameter passing.

Diagnostic Messages 9-15

I

82

83

84

85

86

87

89

91

ERROR Too few arguments to routine.

You attempted to call routine, but you tried to pass fewer arguments to routine than it was
expecting. If you want to pass n arguments to a routine declaring more than n parameters,
you must use the variable routine attribute (which is described in the "Variable" section in
Chapter 5).

ERROR Argument n to routine is not compatible with the declared argument type.

You tried to call routine, but the nth argument in the call does not have the same data
type as the nth parameter. You can suppress this error by using the univ routine attribute.
See Chapter 5 for details on parameter passing.

ERROR Argument n to routine is not within the declared argument subrange.

You tried to pass a subrange expression as the nth argument to call routine, but the value
of the expression was not within the declared range of the subrange.

ERROR Improper use of element, only a PROCEDURE name is valid here.

Domain Pascal assumed you were trying to call a procedure, but element is not a proce­
dure. Any statement having the following format is assumed to be a procedure call:

IDENTIFIER (any thing);

ERROR Unrecognized statement (token).

The compiler could not classify a statement into one of the basic categories of Domain
Pascal statements (such as assignment, procedure call, function call, goto, repeat). Possi­
bly, you misspelled a keyword, or perhaps you forgot to close the previous statement with a
semicolon.

ERROR GOTO label expected (token).

You forgot to specify a label immediately after the keyword goto. Domain Pascal expected
a declared variable, but found token instead. See the goto listing of Chapter 4.

ERROR The value of number is outside the range of valid set elements.

You tried to assign a number greater than 1023 to a set. See the "Set Operations" listing
in Chapter 4 for details on assigning values to sets, and see the "Sets" section in Chapter 3
for information on declaring set types and variables.

ERROR Function type must only be specified when the function is declared FORWARD.

You specified a function as forward, but you mistakenly specified the data type of the
function twice. You must only specify the data type of the function once. Specify the
data type when you specify forward. See the "Forward" section in Chapter 5 for an expla­
nation of forward.

9-16 Diagnostic Messages

92

93

94

95

96

97

98

99

ERROR (Option) specifier is not valid when defining a procedure/function previously de­
clared to be FORWARD.

If option is forward, then you probably declared forward twice for the same routine. Pos­
sibly, you declared a routine as forward, but you also used the routine with both define
and extern. If option is extern, then you probably declared extern twice for the same
routine.

ERROR Improper use of the DEFINE statement.

See Chapter 7 for a complete description of the define statement.

ERROR Improper DEFINE statement structure.

See Chapter 7 for a complete description of the define statement.

ERROR Multiple declaration of element i n DEFINE statement.

You used define to define the same element twice. See Chapter 7 for a complete descrip­
tion of the define statement.

ERROR Constant value cannot be evaluated at compile time.

You specified an expression in a const declaration that the compiler could not reduce to a
constant. For example, the following declarations trigger this error because x is not a con­
stant:

VAR
x integer;

CONST
ax addr(x) ;

ERROR Label label is never defined.

You declared a label in the label declaration part of a routine, but you never specified this
label inside the code portion of the routine. Possibly, you declared the label in the label
declaration part of a routine, but specified this label inside the code portion of another
routine. See Chapter 2 for a description of labels, and see the goto listing in Chapter 4
for a description of the goto statement.

ERROR Improper PROCEDURE/FUNCTION structure (token).

Refer to Chapter 2 for the rules on routine structure. Possibly, you put a period instead of
a semicolon at the end of a routine.

ERROR BEGIN expected in routine name_oJ_routine; found "token".

The code portion of a routine must start with the keyword begin. Domain Pascal discov­
ered token instead of begin. Refer to Chapter 2 for the rules on routine structure. Note
that every routine (including the main program) must at least include the keywords begin
and end.

Diagnostic Messages 9-17

100

101

102

103

105

106

107

109

110

ERROR END expected; found "token".

You forgot to mark the finish of a routine with an end statement. Ignore the line number
the error is reported at; the compiler usually does not discover this error until the end of
the program. See Chapter 2 for the rules on program structure.

ERROR Statement separator expected (token) .

Domain Pascal discovered two statements with nothing to separate them. You probably
made one of the following three mistakes: you forgot a semicolon; or, you forgot a closing
end in a compound statement; or, you forgot an else in an if/then/else statement.

ERROR Improper argument list (token).

You forgot to specify a "}" to terminate a type transfer function. See the "Type Transfer
Functions" listing in Chapter 4.

ERROR THEN expected in IF statement (token).

You forgot the then part of an if/then/else statement. For details on then, see the if list­
ing in Chapter 4.

ERROR OF expected in CASE statement «token}).

A case statement must begin with the format

CASE expr OF

but you forgot the keyword of. See the case listing in Chapter 4.

ERROR CASE label expected (token).

In a case statement, you specified a statement without specifying a constant. Possibly, you
forgot to conclude the case statement with end. See the case listing in Chapter 4.

ERROR END/OTHERWISE expected in CASE statement (token).

You probably forgot to conclude a simple statement with a semicolon or a compound state­
ment with an end.

ERROR DO expected in WHILE statement (token).

You forgot to specify the keyword do following the condition in a while statement.

ERROR UNTIL expected in REPEAT statement (token).

Domain Pascal found token instead of until in a repeat statement. Refer to the repeat
listing in Chapter 4.

9-18 Diagnostic Messages

111

112

113

114

115

116

117

120

121

ERROR := expected in FOR statement (token) .

Domain Pascal found token instead of := in a for statement. Refer to the for listing in
Chapter 4.

ERROR TO or DOWNTO expected in FOR statement (token).

Domain Pascal found token instead of to or downto. Refer to the for listing in Chapter 4.

ERROR DO expected in FOR statement (token) .

Domain Pascal found token instead of do. Refer to the for listing in Chapter 4.

ERROR Improper WITH statement (token).

Refer to the with listing in Chapter 4.

ERROR DO expected in WITH statement (token).

Refer to the with listing in Chapter 4.

ERROR Improper expression (expression).

A variety of situations could have caused this error. Probably Domain Pascal was expect­
ing a keyword, and you either did not enter a keyword, or you did not enter a keyword
that was appropriate to the situation. The inappropriate expression is expression. For ex­
ample, you can trigger this error by using the keyword if without using the keyword then.
Another possibility is that you forgot a semicolon on the line preceding the line that the
compiler reported the error. Another possibility is that you began an identifier with a digit
or dollar sign ($) rather than a character.

ERROR Identifier expected (token).

Domain Pascal was expecting an identifier and found token instead. Chapter 2 defines
identifiers.

ERROR OF expected in FILE declaration (token).

You used the keyword file without following it with the keyword OF. See Chapter 3 for
details on declaring file types.

ERROR Expression/constant cannot be passed as argument n to routine.

You specified an expression or constant as the nth argument to routine. However, the nth
parameter of routine is declared as var or in out, and you can only pass variables as argu­
ments to such a parameter.

Diagnostic Messages 9-19

122

123

124

125

126

127

128

129

ERROR Improper use of identifier.

You probably tried to call a predeclared procedure as a function or a predeclared function
as a procedure. See Chapter 5 for a description of the difference between calling proce­
dures and calling functions.

ERROR Attempted assignment to (variable), a FOR-index variable, or formal parameter
marked as IN.

You either tried to assign a value to variable inside a routine that declared it as in, or you
tried to modify a FOR loop's index variable inside the loop. If you did the former, you
can correct this error by changing the in parameter to in out or var. If your error was
attempting to modify a for loop's index variable, you can eliminate the code inside the
loop that modifies the variable.

ERROR Routine requires TEXT file parameter.

You specified a file of variable as an argument to routine, but routine requires a text vari­
able instead.

ERROR Procedure requires FILE parameter.

You specified an illegal file parameter for open or close. Only identifiers are legal file pa­
rameters. FORTRAN programmers might have triggered this error by using an integer as a
file parameter. Possibly, you forgot to specify any file parameter at all.

ERROR Procedure cannot be performed on INPUT file.

The standard input file (input) cannot be an argument to rewrite, put, or page. See the
"Default Input/Output Streams" section in Chapter 8 for details on input.

ERROR Procedure cannot be performed on OUTPUT file.

The standard output file (output) cannot be an argument to reset, get, eof, or eoln. See
the "Default Input/Output Streams" section in Chapter 8 for details on output.

ERROR Argument to identifier is not a pointer reference.

A predeclared procedure (typically new or dispose) requires an argument of a pointer
type.

ERROR Operand operand] is not compatible with (routine).

You tried to read a value into an expression; for example, consider the following state­
ments:

READ(x + 1);
READLN(x + 1);
READLN(x); x := x + 1;

{wrong}
{wrong}
{right}

9-20 Diagnostic Messages

130

131

132

133

134

135

136

ERROR Fraction width specified for operand (element) that is not of a REAL type.

In a write or writeln statement, you specified a two-part field width for a nonreal expres­
sion. If the expression is real, you can specify an optional one- or two-part field width,
but if the expression is not real, then you can only specify an optional one-part field
width. See the write listing in Chapter 4 for a complete description of field widths.

ERROR Field width specifier is not permitted.

You can only specify a field width for a write or writeln statement. If you specify a field
width for any other statement, Domain Pascal issues this error. When you call a proce­
dure or function, Domain Pascal interprets any colon (:) inside the call as a field width.

ERROR Field width specifier (token) is not INTEGER.

Domain Pascal was expecting to find an integer field width, but found token instead. Re­
member, you format real numbers with a two-part field (not a decimal). Note that when
you call a procedure or function, Domain Pascal interprets any colon (:) inside the call as
a field width. So, possibly you triggered this error with an inadvertent colon.

ERROR Type of operand (identifier) is not compatible with the routine operation.

You tried to read or write an aggregate variable (such as an array or record) to or from a
text (unstruct) file. You can correct this mistake by specifying a rec file instead of an un­
struct file. If you must use a text file, you can correct the error by specifying a field (if a
record) or an element (if an array) rather than the full aggregate.

ERROR Improper file name in OPEN.

The file name is the second argument to the predeclared open procedure. The name must
be a string constant or string variable. See the open listing in Chapter 4 for details on file­
names that you can specify.

ERROR Improper file mode in OPEN.

The file mode is the third argument to the predeclared open procedure. The file mode
must be a character string, a string constant, or a variable whose data type is an array of
char. See the open listing in Chapter 4 for details on file modes.

ERROR Improper status argument in procedure.

You specified a status argument to procedure that had a data type other than integer32.
A common mistake is to misuse a 8tatu8_$t variable. For example, compare the right and
wrong ways to use such a variable in 'an open procedure:

%INCLUDE '/sys/ins/base.ins.pas';
VAR

st
fl, f2

status_$t;
text;

OPEN(fl, 'angerl', 'NEW', 'st);
OPEN(f2, 'anger2', 'NEW', st.all);

{wrong}
{right}

Refer to the open and find listings in Chapter 4 for details on syntax.

Diagnostic Messages 9-21

137

138

139

140

141

142

ERROR Procedure cannot be used on a text file.

The first argument to find or replace must be a variable of type file. You have mistak­
enly specified a variable of type text. Refer to the find or replace listings in Chapter 4
for details.

ERROR Record number is not integer in FIND.

The second argument to the find procedure is the record number, and this argument must
be an integer expression. Refer to the find listing in Chapter 4 for details on syntax.

ERROR Improper parameter list in PROGRAM statement "1.

You made a mistake in your program heading. If you specified a file list in the program
heading, then make sure that you specified the files as identifiers (and not as strings). For
example, compare the following two file lists:

PROGRAM test(input, output); {right}
PROGRAM test('input', 'output'); {wrong}

ERROR Compiler failure, unknown tree node.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, unknown top node.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, no temp space.

Your program requires too much space on the stack. There are several ways you might be
able to eliminate this error.

Try changing dynamic variables that require a lot of space, such as large records and ar­
rays, to static variables. Static variables do not require stack memory. Use the static at­
tribute to allocate a variable in a static data area and keep its name local to the module or
program in which it is declared.

Another way to reduce your program's stack requirements is to reduce the number of tem­
porary variables that it uses. For example, you could

• Break the subroutines into smaller subroutines that can be separately compiled.
Smaller compilation units require fewer temporary variables and will therefore re­
quire less space on the stack during compilation.

• Try using the same temporary variables in all your program's loops, so that the
compiler does not create additional temporary variables for each loop.

• For functions returning large aggregates, use var or in out parameters in a
procedure instead of function return values. Thus, the compiler will not have to
create temporary variables to hold the return values.

9-22 Diagnostic Messages

143

144

145

146

147

148

149

150

151

ERROR Compiler failure, lost value of node.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, registers locked.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, no emit inst.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, procedure too large.

The routine you are trying to compile may have exceeded compiler implementation limits.
Try to break the routine into multiple routines and modules and then recompile. If the
problem still persists, please contact either your HP Response Center or your local HP rep­
resentative.

ERROR Compiler failure, inst disp too large.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, obj module too large.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, no free space.

The compiler ran out of dynamic memory while compiling your program. Try to break the pro­
gram into mUltiple routines and modules and then recompile. Also, check the amount of free
disk space on your system (for example, with the Icom/lvolfs command). If you seem to have
enough disk space. contact either your HP Response Center or your local HP representative.

ERROR Compiler failure, short branch optimization.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Routine was declared FORWARD on line number and never defined.

You specified routine as forward, but you did not define it in your program. See the
"Forward" section in Chapter 5 for details on forward.

Diagnostic Messages 9-23

152

153

154

155

157

158

159

160

ERROR Section name (identifier) conflicts with procedure or data section name.

You specified identifier as a section name for a var declaration part; however, identifier is
a reserved section name. Please pick another name instead, or remove the section name
completely. See the "Putting Variables Into Sections" section in Chapter 3 for details on
naming sections.

ERROR Improper section name specification token.

You were declaring a section name for a group of variables, but you specified token rather
than an identifier as the name of the section. See the "Putting Variables into Sections"
section in Chapter 3 for details on naming sections.

ERROR Conflicting storage allocation specifications.

You declared a variable as static and as belonging to a nondefault section name. It can­
not be declared as both at the same time.

WARNING Constant subscript (value_of_constant) to array name_of_array is out of range.

The value_oJ_constant was not within the declared range of name_of_array. You must
either use a different constant or expand the declared range of the array. See the "Ar­
rays" section in Chapter 3 for a description of array declaration.

ERROR Identifier was declared in a DEFINE statement but never defined.

You used identifier in a define statement, but forgot to use it as the name of a procedure,
function, or variable. See Chapter 7 for an explanation of the define statement.

ERROR Improper OPTIONS specification (token).

You made a mistake while declaring OPTIONS for a routine. Probably, you specified to­
ken instead of a valid routine attribute. Possibly, you forgot to mark the end of an OP­
TIONS clause with a semicolon. The valid routine attributes are listed in Chapter 5.

ERROR Duplicate OPTIONS specification (routine_ attribute).

You specified the same routine attribute twice in an OPTIONS clause. You can only spec­
ify it once. The "Routine Options" section in Chapter 5 describes the OPTIONS clause.

ERROR Conflicting OPTIONS specification (routine_attribute).

You specified several routine attributes in an OPTIONS clause; however, routine_attribute
cannot appear in the same OPTIONS clause as one of the previous routine attributes. For
example, you cannot specify both forward and extern in the same OPTIONS clause. You
can also trigger this error by mistakenly using the same routine attribute twice. The "Rou­
tine Options" section in Chapter 5 describes the OPTIONS clause.

9-24 Diagnostic Messages

161

162

163

164

165

166

168

169

ERROR Unrecognized OPTIONS specification (token).

You specified token inside an OPTIONS clause, but token is not a valid routine attribute
(described in Chapter 5).

WARNING Conditional compilation user warning.

You triggered a warning-level problem through misuse of the conditional compiler direc­
tives. More specific messages will follow this one. See the "Compiler Directives" listing of
Chapter 4 for details on the conditional compilation directives.

ERROR Conditional compilation user error.

You triggered an error-level problem through misuse of the conditional compiler directives.
More specific messages will follow this one. See the "Compiler Directives" listing of Chap­
ter 4 for details on the conditional compilation directives.

ERROR Conditional compilation syntax error; look at prior" (PreProc)" message.

" (PreProc)" is an abbreviation for the Domain Pascal preprocessor. This error is telling
you that the preprocessor found an error and passed it along to the compiler. The
preprocessor found an error in a conditional compilation directive. (The conditional com­
pilation directives are %var, %if, %then, %else, %config, %elseif, %elseifdef, %enable,
%endif, and %ifdef.) Possibly, you used a conditional compilation variable without having
first declared it (with a %var directive). Another possibility is that you used an operator
other than and, or, and not in a predicate. See the "Compiler Directives" listing in Chap­
ter 4 for details.

ERROR Conditional compilation not balanced.

Probably, you forgot to end an %if directive with the %end directive. (Making this mistake
may trigger several other errors including Error 6: "Period expected at end of program.")
See the "Compiler Directives" listing in Chapter 4 for details.

ERROR Compiler failure, data frame overflow.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, register consistency.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, no temp created.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

Diagnostic Messages 9-25

170

171

173

174

175

176

177

178

179

ERROR Compiler failure, improper forward label at token.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, pseudo pc consistency.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Cannot take the address of internal routine identifier.

You cannot pass identifier as an argument to the addr function, because it is an internal
routine. An internal routine is any routine declared in the main program, any routine
nested inside another routine, or any routine specified with the routine option internal.

ERROR Ptr is keyword1 type but operand is a keyword2.

You tried to assign a value that has a data type other than what the pointer is expecting.
Remember that in Domain Pascal, unless you use univ Jltr, a pointer can only point to a
value of the specified data type. See Chapter 3 for a discussion of pointer types.

ERROR Incompatible function return types.

A pointer to. a function is expecting a value of a particular data type to be returned to it,
but you mistakenly tried to return a value of a different data type to it. See Chapter 3 for
a discussion of pointer types.

ERROR Incompatible VARIABLE arguments options.

Possible, there may be mismatch between a pointer to a procedure or function, and the
pointer value you are actually trying to assign to it.

ERROR Incompatible number of parameters.

Possibly, there is a mismatch between a pointer to a procedure or function, and the
pointer value you are actually trying to assign to it.

ERROR Incompatible ECB options.

Possibly, there is a mismatch between a pointer to a procedure or function, and the
pointer value you are actually trying to assign to it.

ERROR Incompatible parameter passing conventions for parameter identifier.

Possibly, there is a mismatch between the parameter-passing conventions declared for a
pointer to a procedure or function, and the pointer value you are actually trying to assign
to it.

9-26 Diagnostic Messages

180

181

182

183

184

185

188

190

ERROR Incompatible types specified for parameter identifier.

Possibly, there is a mismatch between the parameter-passing conventions declared for a
pointer to a procedure or function, and the pointer value you are actually trying to assign
to it.

ERROR INTERNAL option is illegal for PROCEDURE" or FUNCTION" types.

You mistakenly tried to use the routine option internal in a procedure or function pointer.

ERROR Incompatible VAL_PARAM options.

You called a routine that used the valJ)aram routine option inconsistently. For example,
suppose you declare a pointer to a function as follows:

TYPE
func_ptr = "FUNCTION (x:integer): real;

You want funcJ)tr to correspond to an external function that you declare as:

FUNCTION bad_call (x:integer) : real; EXTERN; VAL_PARAM;

However, calling bad_call by passing its address as a funcJ)tr type variable causes an er­
ror. The type declaration did not specify val_param, but the function heading did.

ERROR "[" expected; "token" found.

The compiler was expecting to encounter a left bracket" [", but found token instead.

ERROR "]" expected; "token" found.

The compiler was expecting to encounter a right bracket "]", but found token instead.

ERROR Illegal type of constant" token" for variable" identifier".

You were trying to initialize variable identifier, but you mistakenly specified a value token
that did not have the same type as identifier. The compiler will not perform automatic
type transfers for variable initializations in the var declaration part.

ERROR Dynamic variable identifier cannot be initialized.

By default, all variables declared in routines other than the main program will be allocated
dynamically. You cannot initialize dynamic variables in the var declaration part. If you
want to get around this problem, you can use the variable allocation clause static to force
the compiler to store a routine variable nondynamically (statically). If you use static, the
compiler lets you initialize the variable.

ERROR Cannot initialize null array identifier.

You specified a null array (that is, an array that takes up no space in main memory) which
by itself would only cause a warning; however, you mistakenly tried to initialize the null
array.

Diagnostic Messages 9-27

191

192

194

195

196

197

198

199

WARNING String initializer too long for name_of _array; truncated to fit.

You tried to initialize name_oJ_array with a string that had too many characters. The
compiler is warning you that you lost one or more characters of the string in the initializa­
tion. To avoid this, you should probably use an asterisk in the index expression of the
array. The asterisk tells the compiler to figure out how many characters the string requires
and declares the array accordingly. See the "Defaulting the Size of an Array" section in
Chapter 3 for details.

ERROR Variable name is not EXTERN; cannot DEFINE it.

You declared name in a var declaration part, and you tried to define it in a define state­
ment. You can only specify name in a define statement if you also declare it as an extern
variable. (See Chapter 7 for details.)

WARNING Unbalanced comment; another comment start found before end.

You specified two comment start delimiters without specifying a comment end delimiter in
between them. You can suppress this warning with the -ncomchk compiler option (de­
scribed in Chapter 6.) Refer to the "Comments" section in Chapter 2 for details on com­
ments.

ERROR Lower bound must be an integer value for upper bound of ".".

You used an asterisk (.) to force the compiler to determine the number of elements in the
array, but you mistakenly specified a noninteger value as the lower bound of the array.
For example, consider the right and the wrong way to use the asterisk:

VAR
x
x

WARNING

array['a' .. *] of char .- 'HELLO';
array[1 .. *] of char .- 'HELLO';

Size of array is zero.

{wrong!}
{Right!}

You specified an array whose index makes no sense. For example, you specified an enu­
merated value for the lower bound and an asterisk for the upper bound. (See Chapter 3
for details on array declaration.)

ERROR Illegal repeat count usage; valid for array elements only.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3.

ERROR Illegal type for repeat count (token); must be integer.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for details on us­
ing repeat counts.

ERROR Illegal repeat count value (token); must be greater than zero.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for details on us­
ing repeat counts.

9-28 Diagnostic Messages

200

201

202

203

204

205

206

207

208

ERROR Repeat count too large by number for array.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for details on us­
ing repeat counts.

ERROR OF expected for repeat count.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for details on us­
ing repeat counts.

ERROR Illegal use of "." repeat count for variable array identi/ier.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for details on us­
ing repeat counts.

ERROR ":=" expected in record initialization.

You were trying to initialize a record field with a value, but you forgot the assignment
phrase (:=). Perhaps you mistakenly used (=) instead of (:=).

ERROR Too many initializers for record init; field list exhausted at constant value_o/_con­
stant.

If a record has n fields, you tried to initialize more than n fields. You can only initialize n
or less than n fields. See the "Initializing Data in a Record" section in Chapter 3 for de­
tails.

ERROR Size of type_transfer Junction is not the same as the size of datatype.

You misused a type transfer function. The size (in bytes) of the datatype and the
type _transfer Junction must be equal. Chapter 3 details the sizes of all data types.

ERROR := expected in assignment statement (token).

Probably, you made a mistake on the left side of an assignment statement that involved a
type transfer function.

ERROR Constant cannot be passed as argument n to routine.

You tried to pass a constant as the nth argument to routine; however, the nth parameter in
routine was declared as var, out, or in out. There are three ways to get around this prob­
lem. First, you can change var, out, or in out to in. Second, change var, out, or in out
to a value parameter. Third, change the constant to a variable. See Chapter 5 for a com­
plete explanation of parameters.

ERROR Expression (operator = token) cannot be passed as argument n to routine.

You mistakenly tried to pass an expression as the nth argument to routine. The problem is
that the nth parameter of routine is a var, out, or in out parameter. You should probably
change the parameter to become a value parameter. See Chapter 5 for a complete expla­
nation of parameters.

Diagnostic Messages 9-29

209

210

211

212

213

214

WARNING Large (number _of_bytes bytes) copy of argument name_of_arg will be done when
routine is invoked.

You are trying to pass a large data structure (probably an array) as a value parameter.
This is going to take up a lot of CPU time at run time. You should change the value pa­
rameter to a variable, in or out parameter. Chapter 5 describes the various kinds of pa­
rameters.

WARNING Routine name _of _routine needs number bytes of stack, which approaches the
maximum stack size of max_size bytes.

You are trying to pass a large data structure (probably an array) as a value parameter.
Consequently, your program will probably execute quite slowly. You should change the
value parameter to a var, in, out, or in out parameter. The "Parameter Types" section
in Chapter 5 describes all the parameter types.

WARNING Routine name needs number bytes of stack, which exceeds the maximum stack size
of max_size bytes.

You probably have a large data structure (usually an array) in your code, and you may be
trying to pass the structure as a value parameter. For example, an array like this

VAR
big_array: array[l.lOOOOO of integer32;

might exceed the maximum stack size.

If you try to run the program, you will probably get an "access violation" error. If the
structure is a value parameter, you should change it to a var, in, out, or in out parame­
ter. The "Parameter Types" section in Chapter 5 describes all the parameter types.

This warning can occur when you compile a program on one type of workstation, but not
occur when you compile on another type. For example, your program might work fine on
a DN460 but when you compile it on a DN330 this warning might occur. This is because
of the difference in virtual address space available on different nodes.

ERROR Function name returns more than 32K bytes.

The data type of the function consumes more than 32K bytes of memory. Probably, the
data type of the function is a large array. Instead of passing the information back through
the function, you should pass it back through a parameter.

ERROR Illegal FOR statement index variable; identifier is a record or an array reference.

Domain Pascal does not permit a component of a record or an element of an array to be
the index-variable in a for statement.

ERROR Size of argument n to routine is not equal to the expected size of number bytes.

You tried to pass a string as the nth argument to routine, but the nth parameter of routine
was expecting a larger or smaller string. You must either change the size of the argument
to match the size of the parameter, or you must declare the parameter as univ. See the
"Univ" section in Chapter 5 for details.

9-30 Diagnostic Messages

228

234

235

236

237

238

240

241

ERROR Too many initializers for array init; " " expected, "token" found.

You specified more data for the array than the array can hold. (See Chapter 3 for details
on declaring arrays.)

ERROR Compiler failure, too many nodes.

This program is so large that the compiler cannot optimize it. You can try recompiling
with -opt 0 (see Chapter 6), but we recommend that you reduce the size of the program
by breaking it up into modules. Chapter 7 explains modules.

WARNING Potential illegal use of FOR index variable (identifier) outside of FOR stmt.

Domain Pascal forbids the use of the value of the index-variable after normal termination
of a for loop. The compiler generates this message if a for loop has no premature exits
(exit or goto) and the value of the index-variable is used outside the loop.

ERROR Floating-point constant "number" conversion problem.

Number was so large that the compiler encountered an overflow error when it tried to con­
vert it from a double to a single, from a double to an integer, or from a single to an inte­
ger.

ERROR Compiler failure, unexpected data init construct: token.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Type _of_routine 1 identifier was previously declared as a type _of _routine2.

You specified identifier as a forward procedure, but in the routine heading, you specified it
as a function. Or, you specified identifier as a forward function, but in the routine head­
ing, you specified it as a procedure. You must declare it as a procedure in both places or
as a function in both places.

WARNING Size of constant (value) is greater than the number of bits (number) in packed field
name ; constant has been truncated.

Value is outside the declared subrange of name. You must specify a value that falls within
the declared range, redeclare name, or omit the keyword packed from the record declara­
tion. (See the "Records" section in Chapter 3 for details on space allocation in packed
and unpacked records.)

ERROR Dividing by zero in a compile-time constant expression.

You tried to divide by zero.

Diagnostic Messages 9-31

242

243

244

245

246

247

248

249

ERROR Size of a PROCEDURE or FUNCTION is undeterminable.

You mistakenly specified the name of a routine as an argument to the sizeof function.
See the sizeof listing in Chapter 4 for a list of its legal arguments.

WARNING Variable name was not initialized before this use.

The compiler is warning you of the possibility of a garbage result when using the value of
variable name. To solve this problem, you must assign a value to name. If name was de­
clared as an out parameter, then you should probably change it to an in out parameter.

WARNING UNIV parameter name should not be passed as a value-parameter.

You specified a univ parameter as a value parameter. You should explicitly declare univ
parameters as in, out, in out, or var. (See the "Univ" section in Chapter 5 fordetails on
univ.) At run time, the called routine copies the value parameter. Since the site of the
parameter and the argument might differ, using a univ value parameter might cause run­
time problems.

ERROR Compiler Failure, Store Elimination Error

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

WARNING Expression passed to UNIV formal name was converted to new type.

See the "Univ" section in Chapter 5 for details on this warning message.

ERROR Compiler failure, implementation restriction: Identifier-list contains too many
names.

This is an implementation restriction. You specified too many identifiers in an enumerated
type. (See the "Enumerated Data" section in Chapter 3 for details on declaring enumer­
ated types.)

ERROR Compiler failure, limit exceeded; limitation_message.

The limitation_message explains the problem.

ERROR Too many nested pointer references for debug tables.

This is an implementation restriction. The symbol table (used by the debugger) cannot
process a record containing pointers to other records in a chain longer than 256 elements.

9-32 Diagnostic Messages

250 INF02 Name_oJ_statement statement was constant-folded at compile time.

Several conditions can cause the compiler to constant-fold a statement. One of the more
common is because the Domain Pascal compiler (SR9 and later) recognizes an attempt to
compare a negative number to an unsigned subrange variable. When it recognizes such an
attempt, it optimizes the code and issues a warning message. For example, consider the
following fragment:

VAR
x O .. 65535;

BEGIN

IF x = -1 THEN RETURN;

END;

The compiler generates no code for the if/then statement because it knows that a negative
value of x is not possible.

When the compiler notes such a contradiction, it issues warning messages. These messages
come from the following three groups:

(IFIWHILEICASE) statement was constant-folded at
compile-time.

Comparison is false
Comparison is true

<= becomes
> becomes <>
>= becomes =
< becomes <>

For example, suppose you compile the following program:

Program warning_test;
VAR

x : 0.100;
BEGIN

write('Enter an integer--'); readln(x);
if x <= 0 then writeln('hi');

END.

The compiler issues the following two warning messages:

<= becomes =
and

IF statement was constant-folded at compile-time.

The first message tells you that the compiler is going to optimize the if/then statement.
The second message tells you that the compiler is going to code the <= as an = because a
< condition is not possible.

Diagnostic Messages 9-33

251

252

253

254

255

256

257

258

If you write the if/then statement in the program as

if x < 0 then writeln('hi');

the compiler prints a "Comparison is false" warning message because it is apparent to the
compiler that there is no way that x < 0 can ever be true. In such a case, the compiler
generates no code for the then part of the statement.

ERROR Conflicting use of section name (name_ol_section).

You specified name_ol_section as both a code section name and a data section name. It
cannot be both. See the "Section" section in Chapter 5 for details.

ERROR Compiler failure, invalid use of multiple sections and non-local goto to label
name_ol_label.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

E:RROR Compiler failure, bad address constant.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR Compiler failure, invalid use of multiple sections and up-level referencing in rou­
tine At.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

INF02 <= becomes =.

See the description of INF02 message number 250.

INF02 > becomes <>.

See the description of INF02 message number 250.

INF02 Comparison is false.

See the description of INF02 message number 250.

INF02 Comparison is true.

See the description of INF02 message number 250.

9-34 Diagnostic Messages

259

260

262

263

~64

INF02 >= becomes =.

See the description of INF02 message number 250.

INF02 < becomes <>.

See the description of INF02 message number 250.

ERROR Value-parameter name was not specified in call to FUNCTION or PROCEDURE
identifier declared OPTIONS(VARIABLE).

You forgot to specify a value for the argument corresponding to parameter name. You
would get run-time access violations since the called procedure copies value parameters
into temporary storage, and the procedure has a variable number of parameters. You can
correct this problem in one of two ways. You can assign a value to the argument, or you
can change the value parameter to a var, in, or in out parameter.

ERROR Only records may have variant tags.

Variant tags give you the capability to create records with variable sizes. For example,
consider the following:

TYPE
emp_stat (exempt, nonexempt);
workerpointer Aworker;
worker = record

first_name
last name

array[l.lO of char;
array[1.14 of char;

next_emp workerpointer;
CASE emp_stat OF

exempt (salary integer16);
single; nonexempt : (wages

plant array[1.20 of char);
end;

VAR
current_worker : workerpointer;

The emp_stat field is a variant tag field because it uses different amounts of storage de­
pending on its value. The function sizeof and the procedures new and dispose can use
variant tags-for example, NEW (current_worker, exempt)-but only when such tags are
part of a record variable. This error occurs if you try to use a variant tag that is not part
of a record.

ERROR Too many variant tags specified for record.

You used more variant tags in the routines new, dispose, and sizeof than are present in
the record type variable. (See the "Variant Records" section of Chapter 3 for a descrip­
tion of variant tags.)

Diagnostic Messages 9-35

265

266

267

268

269

270

271

ERROR Type of tag name incompatible with variant.

The value you supplied when specifying a variant tag field is not one of the choices listed
in the field declaration of the record variable. (See the "Variant Records" section of
Chapter 3 for a description of variant tags.)

ERROR No variant with value of tag name exists.

The value you supplied for a variant tag in the routines new, dispose, or sizeof is not one
of the choices listed in the field declaration of the record variable. For example, you
would get this error if you used the record declaration listed at ERROR message number
263, and then included this line in your program:

NEW (current_worker , salaried)

The error would occur because salaried is not one of the choices for the variant tag
emp_stat. (See the "Variant Records" section of Chapter 3 for a description of variant
tags.)

WARNING Token] should not be followed by token2; the token] will be ignored.

This usually appears when you have a misplaced semicolon. You might have put a semico­
lon (tokenJ) before the reserved word else (token2).

WARNING Missing operator or statement terminator; inserted token to continue parsing.

The compiler generates this message when it is attempting to recover from errors and so
continue parsing. It acts as if the missing token (usually a semicolon) were present, gener­
ates this message, and then goes on. To eliminate this message, insert the necessary delim­
iter(s) in your program and recompile.

ERROR Variables in libraries must be external.

The variables declared in a precompiled library file must be accessible to a program that
uses the file. However, if your precompiled library contains static and/or define variables,
the calling program cannot access those variables because they are not explicitly external.
Such variables are not permitted. To eliminate this error, eliminate the static or define
identifier from the library precompilations.

ERROR Compiled library failure, illegal object type.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR File is not a library pathname.

Pathname, which is supposed to specify a precompiled source library file, either is not a
precompiled library at all, or is a precompiled library file whose data has been corrupted.
Verify pathname. If it is incorrect, make the appropriate fix to your code. If it is correct,
precompile it again to try to get rid of the corrupted data.

9-36 Diagnostic Messages

272

273

274

275

276

277

ERROR Library is incompatible because it was generated by a more recent version of com­
piler.

Library files are not guaranteed to be upward compatible. For example, if you use librar­
ies produced by the newest compiler in a program compiled with an older compiler, they
may be incompatible. To make them compatible, you can do either of the following: use
the newer compiler to compile your source program, or, use an older compiler to produce
the libraries.

ERROR Bodies of PROCEDUREs/FUNCTIONs may not be declared in LIBRARY MOD­
ULES.

The routines defined in a precompiled library file must be accessible to a program that
uses the file. However, such routines are not accessible unless they are marked with the
extern attribute (described in Chapter 7). A routine in your precompiled library file was
not marked extern.

ERROR FORWARD PROCEDURE/FUNCTION declarations are not allowed in LIBRARY
MODULES.

Forward declarations of. procedures or functions are not allowed in a precompiled library
file because such routines are not accessible to a program that uses the file. Rewrite your
code to eliminate the forward declaration and recompile.

ERROR INTERNAL

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

ERROR ":" not permitted after OTHERWISE.

You put a colon (:) after the keyword otherwise in a Domain Pascal case statement.
Otherwise is a clause, not a label, so it does not take a colon.

ERROR Labels not permitted at MODULE level.

Since a module (described in Chapter 7) consists of named routines only, a label can only
be declared within the scope of one of those routines. That is, there is no "main program"
in a module with which a label at module level can be associated. However, you declared
a label at module level. To correct this error, declare the label within the scope of the
program block, or inside one of the routines in the module.

Diagnostic Messages 9-37

278

279

280

281

283

WARNING Identifier has already been used in another context in current scope.

Pascal forbids the redeclaration of a name that has already been used within a program
block. For example, the following code fragment declares a constant ten at program level.
Within procedure bo, ten is used to initialize variable hold. Ten then is illegally
redeclared as a variable of type real.

PROGRAM illegal;
CONST ten := 10;
PROCEDURE bo;

VAR hold integer.- ten;
ten real; { This is illegal! }

INF02 Value assigned to identifier is never used; assignment is eliminated by optimizer.

If identifier's value has side effects, such as in a function call or in a reference to variables
with the device attribute, the value still is computed, and the_ optimizer only eliminates the
assignment to identifier. However, if there are no side effects, the optimizer also elimi­
nates the value's computation.

You can eliminate this warning by eliminating the value assignment to identifier. However,
there are times when you need to call a function, but are not interested in the value it re­
turns and so don't use that value. In that case, use the discard procedure to explicitly
eliminate the value assignment. See Chapter 4 for a description of the discard procedure
and Chapter 3 for information about the device attribute.

WARNING Current semantics for subrange of CHAR is incompatible with SR9.

Earlier versions of the compiler (SR9 and before) incorrectly use 16 bits to store a sub­
range of char. However, SR9. 5 and later versions of the compiler use only eight bits to
store the subrange. The difference in the number of bits the compiler versions use can
introduce incompatibilities among compilation units and data files.

FATAL Too many compilation errors-compilation terminated.

The errors in your program have caused an access violation in the compiler and so compi­
lation cannot continue. Correct the problems already indicated and recompile.

ERROR EXTERN PROCEDURES/FUNCTIONS may not be DEFINED in PROGRAM
name.

A main program (which contains the program heading) may reference externally declared
routines, but it may not define any global entry points. Your program tried to define one
or more such points.

284 ERROR FILE parameters may not be passed by value paramname.

Pascal- forbids passing a file variable as a value parameter. To eliminate this error, change
paramname's declaration to var. The "Parameter Types" section in Chapter 5 describes all
the parameter types.

9-38 Diagnostic Messages

285 ERROR GOTO transfers control to a structured statement outside of its scope token.

Your code includes an erroneous goto into a structured statement. Structured statements
include case, while, repeat, for, and with.

286 ERROR Maximum line length (argument 5 to OPEN) must be an INTEGER.

You gave a value that is not an integer for the buffer_size argument to the open state­
ment. The value must be an integer. See the listing for open in Chapter 4 for more de­
tails.

287 ERROR Maximum line length (argument 5 to OPEN) may only be specified for TEXT files.

An open statement may only include the buffer_size argument if you are opening a text
file. However, you included the argument for an open of some other file type.

288 ERROR Base types of token] and token2 are incompatible.

This error occurs if you try to use the pack or unpack built-in procedures on two arrays
that have different base data types. Those types must be the same. For example, if one is
an array of integer32, the other must be an array of integer32.

289 WARNING Must overflow bounds of array (tokenl) in order to match PACKED array.

This error can occur if you are using the pack or unpack built-in procedures. For every
element in the packed array there must be a corresponding element in the unpacked array.
See the listings for pack and unpack in Chapter 4 for more details.

290 ERROR Index of VARYING must be a positive integer < 65536.

291

292

293

In a varying[x] of char, declaration, you specified a negative value or a value larger than
65535 for x.

ERROR Data type of VARYING strings must be CHAR.

In a varying [x] of TYPE declaration, you specified a type other than char for TYPE.

ERROR Improper VARYING specification syntax (EXPRESSION).

This error can be caused by a variety of syntax errors (for example, missing '[').

ERROR Argument ACTUAL ARGUMENT to FORMAL ARGUMENT is not a VARYING
string.

The formal argument is declared as a variable length string, but you passed it some other
type of value.

Diagnostic Messages 9-39

294 ERROR PROCEDURE may not be called in this context (token).

You used a procedure name in a context where a value must be returned, such as the fol­
lowing: A := X(P(A», where P is a procedure. It is illegal to use a procedure name (to­
ken) in the argument list of a call to another routine. This is because all of a routine's ar­
guments must have or resolve to values. While a function returns a value, a procedure
does not.

295 ERROR Modulus must be >= zero (token).

You specified a MOD operation, A mod B, where B is less than zero. This error can only
occur if you compile with the -iso option.

296 ERROR Length of constant string exceeds maximum of 1024 characters.

A string constant may not exceed 1024 characters.

297 ERROR Only an integer constant is valid here (EXPRESSION).

There are a number of instances where only integer constants are allowed. For example,
you may use only an integer constant to specify an ASCII character in Domain Pascal's
syntax for embedding special characters in string constants.

298 ERROR Argument to token attribute conflicts with value already specified for this type.

You specified conflicting attribute types in an attribute list. For example,

TYPE
int = [word, longl -32768 .. 32767;

The code in this example specifies two conflicting size attributes for into

299 WARNING Specified token attribute conflicts with attributes of base type.

You specified an attribute for an object that is not consistent with the attributes you specified
previously. For example,

TYPE
int = [word] -32768 .. 32767
long_int = [long] int;

The word attribute for the subrange -32768 .. 32767 tells the compiler to allocate 2 bytes of
space for int types, but long tells the compiler to allocate 4 bytes for long_int, which is an int
type.

300 FATAL Size of token 1 bits is invalid for specified type.

You specified an invalid number of bits for an object. (See the "Size-Extension" section of
Chapter 3 for details about size attributes.) For example,

TYPE
number = integer32;

VAR

bad : [byte] number;

The size attribute, byte, specifies 8 bits, but an integer 32-type variable requires at least 32 bits.

9-40 Diagnostic Messages

301 WARNING Size of array element rounded up from token 1 to token2 bits.

In packed arrays, if the element size is less than 16 bits, then the element is padded up to the
nearest power of 2 bits. Thus, in the following example,

array1: PACKED ARRAY [low .. high] OF 0 .. 7;

4 bits would be allocated for each array element.

304 INFO 1 Actual alignment of array elements (token1) is less than natural alignment (to­
ken2).

You probably specified an array of records, and the array's elements are not naturally aligned.
See the "Internal Representation of Packed Records" and the "Alignment-Extension" section
of Chapter 3 for more information about declaring records so that they will be naturally aligned.

305 INFO 1 Actual alignment of token 1 (token2) is less than natural alignment (token3).

A value is naturally aligned if it begins at an address that is a multiple of its size in bytes. For
example, a 2-byte value is naturally aligned if it starts on a 2-byte address boundary. Similarly,
an 8-byte value is naturally aligned if it starts on an 8-byte boundary. This message tells you that
token} 's alignment is less than natural alignment.

306 INFO 1 Size of variable (token 1) rounded up to token2 bytes.

The size of all simple data types must be at least one byte. Therefore, if you specify a size which
is a number of bits that is not evenly divisible by 8, the size will be rounded up to the next byte.

307 INFO 1 Size of function result rounded up to token 2 bytes.

The size of all simple data types must be at least one byte. Suppose you declare a function, foo,
that returns an integer. If you specify a number of bits that is not evenly divisible by 8 as the size
for the result of foo, the compiler rounds the result of foo up to the next byte. For example, if
you specify the result of 100 as follows:

FUNCTION foo: [bit (20)] integer;

the compiler rounds the result of 100 to 24 bits, the next byte.

308 FATAL Compiler failure, no case for object type.

The error is in the compiler, not in your code. Please contact either your HP Response Center or
your local HP representative.

309 INF03 Unnaturally aligned load/store (token1) diminishes code quality.

A value is naturally aligned if it begins at an address that is a multiple of its size in bytes. For
example, a 2-byte value is naturally aligned if it starts on a 2-byte address boundary. Similarly,
an 8-byte value is naturally aligned if it starts on an 8-byte boundary. Most computers are
designed to transfer data most efficiently if the data is naturally aligned. This message tells you
that your code is inefficient because it causes the compiler to load and store data that is not
naturally aligned.

Diagnostic Messages 9-41

310 WARNING Alignment of argument is less than expected by formal parameter token 1.

You passed an argument as a formal parameter that was aligned on a boundary lower than the
boundary expected for the formal parameter. The default alignment for formal parameters is
natural alignment. Therefore, unless you specify the alignment for formal parameters to be
something else, arguments passed to them should be naturally aligned.

312 ERROR Illegal to redefine token 1 (token 2).

The name of a user-defined attribute list may not conflict with a predeclared attribute or op­
tion.

316 ERROR token 1 is inappropriate in this context.

You declared an attribute incorrectly.

319 WARNING Alignment of field (token1) is dependent on the current default alignment environ­
ment.

The alignment of the fields changes, according to the state of the %word_alignment or %natu:,
ral_alignment compiler directives. See the "Compiler Directives" listing for these directives in
Chapter 4 for more information.

320 WARNING Alignment of array elements is dependent on the current default alignment envi­
ronment.

321

322

The alignment of array elements changes, according to the state of the %word_alignment or
%natural_alignment compiler directives. See the "Compiler Directives" listing for these direc­
tives in Chapter 4 for more information.

WARNING Unrecognized option (%token1); assuming %token2.

You misspelled a compiler directive, and the compiler is substituting %token2. For example, if
the compiler finds %insert which is not legal in Domain Pascal, the compiler substitutes %in­
elude and warns you.

ERROR Parameter token1 conflicts with FORWARD or EXTERN declaration of this rou­
tine.

You changed the definition of a parameter when you repeated definitions in a routine declared
with forward or extern. See the "Routine Options" section of Chapter 5 for more details about
routine options.

323 ERROR Function return type conflicts with FORWARD or EXTERN declaration of this
routine.

You changed the definition of a function return type when you repeated function definitions in a
function declared with forward or extern. See the "Routine Options" section of Chapter 5 for
more details about routine options.

9-42 Diagnostic Messages

324 ERROR OPTIONS declaration conflicts with FORWARD or EXTERN declaration of this
routine.

You changed the definition of a routine's routine options when you repeated routine definitions
in a routine declared with forward or extern. See the "Routine Options" section of Chapter 5
for more details about routine options.

325 ERROR Number of parameters in FORWARD or EXTERN declaration is different than in
this declaration.

You changed the number of parameters when you repeated routine declarations in a routine
declared with forward or extern. See the "Routine Options" section of Chapter 5 for more
details about routine options.

326 ERROR ALIGNO may not be passed to UNIV formal parameter token!.

You cannot use the align function with a univ formal parameter. See the" Align" listing in
Chapter 4 for more details about the align function.

327 ERROR Null string is illegal.

ISO Pascal does not permit the string null string (' ').

NOTE: This is an error only if you compile with the -std option.

328 ERROR Type of FILE may not be or contain a FILE type.

It is illegal to have a FILE OF x, where x is itself a file type (e.g. FILE OF TEXT).

329 ERROR token1 contains a FILE type.

It is illegal to do an aggregate assignment of a record or array to another record or array of the
same type if it contains a file type.

330 ERROR token1 is PACKED.

You cannot pack token1 in this context. See the "Packed Arrays" sections of Chapter 3 for
details about packed arrays.

331 ERROR token1 is not PACKED.

You must pack token 1 in this context. See the "Packed Arrays" sections of Chapter 3 for details
about packed arrays.

Diagnostic Messages 9-43

332

333

334

335

336

337

338

9-44

ERROR Tag field of variant selector may not be passed by reference as parameter token 1.

NOTE: This is an error only if you compile with the -std option.

ERROR No assignment to function variable (token 1).

ISO requires at least one assignment to the function variable in a function's body.

NOTE: This is an error only if you compile with the -std option.

ERROR Return type of FUNCTION (token1) must be simple.

ISO does not allow structured types to be the return types of functions.

NOTE: This is an error only if you compile with the -std option.

ERROR Function identifier (token 1) may not be used as a pointer variable.

A function that returns a pointer may not be dereferenced:

TYPE
i_ptr = Ainteger;

FUNCTION x : i_ptr;
BEGIN

NEW(x) ;
XA .- 5; {THIS IS AN ILLEGAL STATEMENT}

END;

NOTE: This is an error only if you compile with the -std option.

ERROR At least one parameter must follow a file variable argument to READ/WRITE.

ISO requires that READ/WRITE have at least one thing to read or write.

NOTE: This is an error only if you compile with the -std option.

ERROR All values of tag type (token1) must appear as case constants.

NOTE: This is an error only if you compile with the -std option.

ERROR FOR index variable (token1) must be declared in the routine in which it is used.

NOTE: This is an error only if you compile with the -std option.

ERROR Incompatible routine OPTIONS.

The options clause in the procedure or function parameter you specified is incompatible with the
options clause of the formal type signature.

Diagnostic Messages

348

349

350

351

352

353

354

355

356

WARNING No path exists to this statement.

The program never reaches this statement; therefore, the compiler does not generate any
code for it. Sometimes a goto statement triggers this warning.

ERROR Alignment stack overflow.

You may not have more than 255 "push~alignment directives in a source file before the corre­
sponding "pop_alignment directives. See the "Compiler Directives" listing in Chapter 4 for
information about these directives.

ERROR Alignment stack underflow.

You cannot have more "pop_alignment directives than "push_alignment directives. See the
"Compiler Directives" listing in Chapter 4 for information about these directives.

ERROR Unmatched %PUSH_ALIGNMENT directive.

This error indicates that you have more "push_alignment directives than %pop_align­
ment directives. The compiler ignores the extra directive. See the "Compiler Directives"
listing in Chapter 4 for information about these directives.

ERROR Type of index constant (constant) does not match array declaration.

You tried to initialize an array with constant. constant is not the same data type as was
declared for the array. The types must match.

ERROR Index constant (constant) is not within array bounds.

constant was not within the declared range of the array. You must either use a different
constant or expand the declared range of the array.

ERROR " :=" is expected after index constant.

An assignment operator (:=) must appear after the index constant(s) and before the value used
to initialize the constant.

ERROR Array elements may not be initialized more than once.

You cannot initialize an array component more than once in a single array initialization state­
ment.

INF04 Size of record is number in word and number in natural alignment environment.

You declared a record whose alignment varies with the alignment environment. Porting an
application from one machine to another may cause problems if new alignment rules are used.

Diagnostic Messages 9-45

357 WARNING Span between elements of array (number bytes) does not match size of base type
typename (number bytes).

358

359

This warning appears if, in a word-alignment environment, you define a record that can have
different sizes in different environments, and you then define an array of those records in a
natural-alignment environment. If you do not correct this error, your program will produce
unpredictable results.

ERROR Reference outside bounds of array number also falls outside of stack frame.

You have an array reference that falls outside the allocated area for that particular routine. Even
though it is usually a poor programming practice, it is sometimes desirable to access beyond an
array declaration. But in this case you've made a reference to data that also falls outside the
stack frame.

ERROR Expression overflows parse stack; please simplify your expression.

The expression stack of the compiler overflowed. You need to break the complex expression
into smaller pieces.

360 WARNING Routine not expanded INLINE at call site (indefinite cause): routine_name.

This warning appears if you request inline expansion for a routine, but the compiler cannot
expand the function inline because of a problem with the function call. See the discussion of
%begin_inline and %end_inline under "Compiler Directives" in Chapter 4 for information
about inline expansion.

361 WARNING Routine not expanded INLINE (indefinite cause): routine_name.

362

This warning appears if you request inline expansion for a routine, but the compiler cannot
expand the function inline because of a problem with the routine to be expanded. See the
%begin_inline and %end_inline entries under "Compiler Directives" in Chapter 4 for informa­
tion about inline expansion.

INF04 Routine expanded INLINE at call site: routine_name.

This informational message appears if you specify an optimization level of 4 and the compiler
selects for inline expansion a function that you have not requested inline expansion for. See the
%begin_inline and %end_inline entries under "Compiler Directives" in Chapter 4 for informa­
tion about inline expansion.

363 WARNING Routine not expanded INLINE at call site (recursion): routine_name.

This warning appears if you request inline expansion for a recursive routine (a routine that calls
itself). Recursive routines cannot be expanded inline. See the %begin_inUne and end_inUne
entries under "Compiler Directives" in Chapter 4 for information about inline expansion.

9-46 Diagnostic Messages

3 64 WARNING Routine not expanded INLINE at call site (caller + callee too large): routine_name.

This warning appears if you request inline expansion for a routine, but the caller and callee
routine together contain too many statements. You also get this warning if the caller and callee
together have more than 255 variables, or if the callee's stack frame contains more than 24K
bytes. See the %begin_inline and %end_inline entries under "Compiler Directives" in Chapter
4 for information about inline expansion.

3 65 WARNING Routine not expanded inline at call site (callee contains unexpanded procedure):
routine_name

This warning appears if you request inline expansion for a routine that has a nested routine that
makes uplevel references and there is more than one call site. For uplevel references to work
correctly, there must be only one call site for a routine that has any number of nested routines
that make uplevel references. If all nested routines are expanded in turn into the outermost
routine, this problem disappears. See the %begin_inline entry under "Compiler Directives" in
Chapter 4 for information about inline expansion.

366 WARNING Routine not expanded inline at call site (parameter is proc): routine_name.

This warning appears if you request inline expansion for a routine that has a routine as a parame­
ter. Routines with routines as parameters cannot be expanded inline. See the %begin_inline
and %end_inline entries under "Compiler Directives" in Chapter 4 for information about inline
expansion.

368 WARNING Routine not expanded inline at call site (psect mismatch): routine_name.

This warning appears if you request inline expansion for a routine, but you have placed the caller
and the callee in different procedure sections by means of a section routine attribute. The caller
and callee must both occupy the same procedure section. See the %begin_inline and %end_in­
line entries under "Compiler Directives" in Chapter 4 for information about inline expansion;
see Section 5.7.1 for information about section.

369 WARNING Routine not expanded INLINE (file variable): routine_name.

This warning appears if you request inline expansion for a routine that has a parameter of type
file. Routines with file type parameters cannot be expanded inline. See the %begin_inline
discussion under "Compiler Directives" in Chapter 4 for information about inline expansion.

370 WARNING Routine not expanded INLINE (record variable): routine_name.

This warning appears if you request inline expansion for a routine that has a parameter of type
record that contains a file type. Routines with records that have file type fields cannot be
expanded inline. See the %begio_inline discussion under "Compiler Directives" in Chapter 4
for information about inline expansion.

Diagnostic Messages 9-47

371 WARNING Routine not referenced, code deleted: routine_name.

374

375

376

377

385

You declared a routine that is not external and has no callers within the current compilation unit.
The compiler has deleted the code for the routine.

ERROR Unable to convert floating point constant to integer: token.

The compiler encountered an overflow error when it tried to convert the floating-point constant
to an integer.

ERROR Call passes argument block of number bytes (implementation limit is 2K).

On a Series 10000 system, you may not pass an argument under the c_param option that con­
tains more than 2K bytes-for example, a very large record. If possible, pass a pointer to the
record, or pass it as a reference argument.

ERROR References to atomic/volatile objects must be properly aligned.

Under normal circumstances the Series 10000 compiler generates, loads, and stores to and from
memory in such a way as to avoid alignment traps. However, if the reference in question is
atomic, the compiler insists on having the datum at least word aligned.

ERROR Unmatched inline directive.

You must match an %end_inline to every %begio_inline and an %end_ooinline to every %be­
gin_noinline. You cannot nest inline directives. You must close one inline scope before open­
ing another. See the "Compiler Directives" listing in Chapter 4 for information about these
directives.

ERROR Auto-padding of strings is restricted to number bytes.

You are assigning all the elements of a string to a larger array of char. Domain Pascal limits you
to 4096 bytes. Auto-padding for larger arrays is not allowed.

388 WARNING Loop structure deleted.

The compiler has deleted a loop. This loop has both of the following characteristics:

• The exit condition is not dependent on the code within the loop.

• The loop has no side effects; that is, it contains no calls and does not update a
variable that is subsequently used.

You should pay particular attention to this warning, as the compiler may have noticed a subtle
bug in your code.

9-48 Diagnostic Messages

400 WARNING Expression will fault at runtime - divide by zero.

You have a divide-by-zero expression. An evaluation of this expression will cause a run-time
fault.

40 1 WARNING Expression will fault at runtime - argument is outside function domain.

You have an expression whose value is undefined. An example of this is the natural log of a
negative number. The compiler is informing you that an evaluation of this expression will cause a
run-time fault.

402 WARNING Expression will fault at runtime - floating-point overflow.

You have an expression that causes floating-point arithmetic to overflow. An evaluation of this
expression will cause a run-time fault.

403 WARNING Expression will fault at runtime - floating-point underflow.

You have an expression that causes floating-point arithmetic to underflow. An evaluation of
this expression will cause a run-time fault.

404 W ARNINO Expression will fault at runtime - negative to non-integer power.

You have an expression that raises a negative to a real power. This is an undefined operation.
An evaluation of this expression will cause a run-time fault.

Diagnostic Messages 9-49

9.3 Run-Time Error Messages

Run-time error messages are notoriously difficult to decipher, mainly because any number
of programming errors can cause them. This section attempts to describe the more com­
mon run-time errors, reasons why your program may have caused them, and some general
approaches for getting rid of them.

Run-time errors fall into two broad categories:

• Operating system errors, described in Section 9.3.3

• Floating-point errors, described in Section 9.3.4

9.3.1 Causes of Run-TIme Errors

Operating system run-time errors most commonly occur when your program attempts to
access a forbidden area of memory. There are several ways in which a program can do
this:

• If your program tries to write to an area of memory that has been allocated but is
read-only, such as a library or your program text, it causes an access violation.

• If your program tries to access an area of memory that has not been allocated at
all, it causes a "reference to illegal address" error.

• If your program writes over a part of the stack frame that contains data the func­
tion needs in order to return to the caller, it causes a stack unwind error.

• If your program tries to write to a guard segment-a small area of memory on
each side of a stack frame-it causes a guard fault.

Figure 9-1 shows the main areas of memory a program uses and the errors caused by in­
valid uses of these areas.

9-S0 Diagnostic Messages

Static memory Type of error

Program text
Access violation

Read-only

Static data
Out-of-bounds address

Read-write

Unallocated Illegal address
storage

- .

'---~

Libraries
Access violation

Read-only

Dynamic memory

Guard area Guard fault

Stack frame Stack unwind error

Read-write Out-of-bounds address

Guard area Guard fault

Figure 9-1. System Memory and Run-Time Errors

Diagnostic Messages 9-51

9.3.2 Debugging Run-Time Errors

If you get a run-time error after your program compiles with a warning message, the warn­
ing message may tell you what and where the problem is. However, if the program com­
piles with no warnings, you need to determine what line of your program is causing the
error before you can determine what the error is and how to fix it. Two Domain/OS tools
can provide this information:

• The traceback tool, tb

• The Domain Distributed Debugging Environment (Domain/DOE)

Getting a traceback is usually the best way to begin to find the cause of a run-time error.
The command tb tells you what line of your source code caused the error. The command
tb -full provides information about the address that caused the. error and the contents of
the machine registers. For more information about tb, see Section 6.9.1.

If the information provided by tb is not enough to enable you to find the problem, you
need to invoke the debugger. For information about using the debugger, refer to the Do­
main Distributed Debugging Environment Reference Manual.

9.3.3 Operating System Error Messages

access violation (OS/fault handler)

Your program attempts to access address space that is allocated in the process, but is not accessi­
ble to your program-for example, global read-only address space. An invalid address, such as
zero or a negative number, also causes this error.

An access violation is most commonly caused by stray pointers. For example, you can cause an
access violation by assigning a value to a record field before you have allocated storage for the
record.

Apollo-specific fault (UNIX/signal)

If you do a full traceback, this error will probably resolve to another error, such as "reference to
out-of-bounds address." For information, refer to the discussion of that error.

Bus error

If you do a traceback, this BSD and SysV environment run-time error will resolve to another
error, such as "odd address error." For information, refer to the discussion of that error.

guard fault (OS/MST manager)

Your program attempts to access one of the guard segments surrounding the program stack. (A
guard segment is an area that sits on either side of sections of memory.) This error is usually
caused by exceeding the stack size. One solution is to increase the stack size with the following
command line:

bind objectJiles -stacksize decimal_number

9-52 Diagnostic Messages

The bind utility is described in Section 6.5.2 and in the Domain/OS Programming Environment
Reference.

Another solution is to check whether you are walking off the end of an array into the guard
region.

This error can also be caused by an infinitely recursive call or by a stray pointer that happened to
land on a guard segment.

Memory fault

If you do a traceback, this SysV environment run-time error will probably resolve to "access
violation," "guard fault," "reference to illegal address," or "reference to out-of-bounds ad­
dress. " For information, refer to the discussions of these errors.

odd address error (OS/fault handler)

Your program attempts to access an address that is odd (that is, not divisible by 2). You may not
access an odd address.

This error occurs only on Series 10000 systems and on older M680xO machines such as the
DN300.

This problem is most commonly caused by stray pointers.

reference to illegal address (OS/MST manager)

Your program attempts to access address space that isn't allocated at all; it is not mapped into
memory.

This problem is most commonly caused by a stray pointer or by an array reference that gets into
an invalid area of memory.

reference to out-of-bounds address (OS/MST manager)

Your program references address space that is allocated but lies beyond the end of the mapped
object.

This problem is most commonly caused by running off the end of an array.

Segmentation fault

If you do a traceback, this BSD environment run-time error will probably resolve to "access
violation," "guard fault," or "reference to illegal address." For information, refer to the discus­
sions of these errors.

unable to unwind stack because of invalid stack frame (process manager/process
fault manager)

Somehow, somewhere, the run-time stack has been trashed (most likely by your program going
astray) and is unusable.

This problem is commonly caused by an infinitely recursive program, or by an array assignment
that runs off the end of the array into the stack frame. It can also be caused by stray pointers and
by mismatched arguments.

Diagnostic Messages 9-53

9.3.4 Floating-Point Errors

This section gives brief explanations of some common floating-point errors. We discuss
only errors whose meaning is not obvious; we omit other common errors, such as division
by zero or floating-point overflow, that are easy to understand. For complete information
about floating-point calculations on Domain/OS systems, consult the Domain Floating­
Point Guide.

Floating exception

If you do a traceback, this BSD and SysV environment run-time error will resolve to another
error, such as "floating point operand error." For information, refer to the discussion of that
error.

floating point operand error (OS/fault handler)

One of the operands in an expression is invalid; that is, it does not represent a real number or is
otherwise not an acceptable value for that particular operation. An example is to give a negative
number as argument to a built-in logarithm function.

floating point branch/set on unordered condition (OS/fault handler)

This error means that you got a QNAN signal (Quiet Not-A-Number). The bit pattern for the
floating point variable has all exponent bits set (to 1) and also had the MSB (most significant bit)
of the fraction set. Such a bit pattern should never occur as the result of an arithmetic operation
on legitimate floating-point values. It can result from uninitialized variables, from type transfers,
from an operand error, or from operations with NAN (Not-A-Number) inputs.

floating point signalling not-a-number (OS/fault handler)

This error, a Signaling NAN (SNAN), is like a QNAN except that the MSB of the fraction is not
set (0), but at least one bit in the fraction is set (to 1). An SNAN is never created as the result of
an operation. Any arithmetic operation on an SNAN will give this error.'

----88----

9-54 Diagnostic Messages

Appendix A

Reserved Words and
Predeclared Identifiers

This appendix lists the reserved words and predeclared identifiers in Domain Pascal.

Reserved words, listed in Table A-1, are names of statements, data types, and operators.
You can use reserved words only with their reserved meanings (and within strings and com­
ments). You cannot use a reserved word as an identifier.

Table A-i. Reserved Words

and end not set

array file of then

begin for or to

case function packed type

const goto procedure until

div if program var

do in record while

downto label repeat with

else mod

Reserved Words and
Predeclared Identifiers A-I

Table A-2 lists the predeclared identifiers. These identifiers name types, functions, proce­
dures, values, and files. You can redefine predeclared identifiers; however, doing so means
that you can no longer use the identifier for its original meaning within the scope of the
redefinition.

Table A-2. Predeclared Identifiers

abs exp next set_sr

addr extern nil sin

align false odd single

append find open sizeof

arctan firstof ord sqr

arshft forward otherwise sqrt

boolean get out static

char in_range output string

chr input page substr

close integer pred suce

eos integer16 ptoe text

ctop integer32 put true

define internal read trune

disable lastof readln univ

discard In real univ_ptr

dispose lshft replace val_param

double max reset varying

enable maxint return write

eof min rewrite writeln

eoln module round xor

exit new rshft

----88----

Reserved Words and
A-2 Predeclared Identifiers

Appendix B

ISO Latin-l rrable

Domain Pascal uses the ISO DIS 8859/1 Character set, commonly known as Latin-I, for
character data representation. The Latin-l set also includes all ASCII characters in their
standard positions. Table B-1 shows the decimal, octal, and hexadecimal values for all
ISO Latin-l characters.

You can use Latin-l characters in comments or character strings, but are limited to using
ASCII letters A-Z and a-z (decimal positions 65-90 and 97-122, respectively), digits, un­
derscores U, and dollar signs ($) in identifiers. This adheres to existing Pascal standards.

NOTE: The characters with decimal numbers 128 through 131 are miss­
ing from the table. These values are reserved for future standard­
ization and are not available to programmers.

ISO Latin-l Table B-1

Table B-1. ISO Latin-1 Codes

oct dec hex character oct dec hex character

0 0 0 NUL "@ 40 32 20 space
1 1 1 SOH AA 41 33 21 !
2 2 2 STX "B 42 34 22 "
3 3 3 ETX AC 43 35 23 #
4 4 4 EOT AD 44 36 24 $
5 5 5 ENQ AE 45 37 25 %
6 6 6 ACK AF 46 38 26 &
7 7 7 BEL AG 47 39 27 ,

10 8 8 BS AH 50 40 28 (
11 9 9 TAB AI 51 41 29)
12 10 A LF AJ 52 42 2A *
13 11 B VT AK 53 43 2B +
14 12 C FF AL 54 44 2C ,
15 13 D CR AM 55 45 2D -
16 14 E SO AN 56 46 2E ·
17 15 F SI AO 57 47 2F /
20 16 10 DLE Ap 60 48 30 0
21 17 11 DC1 AQ 61 49 31 1
22 18 12 DC2 AR 62 50 32 2
23 19 13 DC3 AS 63 51 33 3
24 20 14 DC4 AT 64 52 34 4
25 21 15 NAK AU 65 53 35 5
26 22 16 SYN AV 66 54 36 6
27 23 17 ETB "W 67 55 37 7
30 24 18 CAN AX 70 56 38 8
31 25 19 EM Ay 71 57 39 9
32 26 lA SUB AZ 72 58 3A · ·
33 27 1B ESC A[73 59 3B · ,
34 28 lC FS AI 74 60 3C <
35 29 ID GS ..] 75 61 3D =
36 30 IE RS 76 62 3E >
37 31 IF US A 77 63 3F ? -

(Continued)

B-2 ISO Latin-1 Table

Table B-1. ISO Latin-1 Codes (Cont.)

oct dec hex character oct dec hex character

100 64 40 @ 140 96 60 ,
101 65 41 A 141 97 61 a
102 66 42 B 142 98 62 b
103 67 43 C 143 99 63 c
104 68 44 D 144 100 64 d
105 69 45 E 145 101 65 e
106 70 46 F 146 102 66 f
107 71 47 G 147 103 67 g
110 72 48 H 150 104 68 h
111 73 49 I 151 105 69 .

1

112 74 4A J 152 106 6A j
113 75 4B K 153 107 6B k
114 76 4C L 154 108 6C 1
115 77 4D M 155 109 6D m
116 78 4E N 156 110 6E n
117 79 4F 0 157 111 6F 0

120 80 50 P 160 112 70 P
121 81 51 Q 161 113 71 q
122 82 52 R 162 114 72 r
123 83 53 S 163 115 73 s
124 84 54 T 164 116 74 t
125 85 55 U 165 117 75 u
126 86 56 V 166 118 76 v
127 87 57 W 167 119 77 w
130 88 58 X 170 120 78 x
131 89 59 y 171 121 79 Y
132 90 SA Z 172 122 7A z
133 91 5B [173 123 7B {
134 92 5C \ 174 124 7C I
135 93 5D] 175 125 7D }
136 94 5E " 176 126 7E -
137 95 SF 177 127 7F del -

(Continued)

ISO Latin-1 Table B-3

Table B-1. ISO Latin-1 Codes (Cont.)

oct dec hex character oct dec hex character

204 132 84 IND 247 167 A7 §
205 133 85 NEL 250 168 A8 ..
206 134 86 SSA 251 169 A9 ©

207 135 87 ESA 252 170 AA a

210 136 88 HTS 253 171 AB «

211 137 89 HTJ 254 172 AC ..,

212 138 8A VTS 255 173 AD SHY
213 139 8B PLD 256 174 AE ®

214 140 8C PLU 257 175 AF -
215 141 8D RI 260 176 BO 0

216 142 8E SS2 261 177 B1 ±
217 143 8F SS3 262 178 B2 2

220 144 90 DCS 263 179 B3 3

221 145 91 PU1 264 180 B4 ,
222 146 92 PU2 265 181 B5 J.l

223 147 93 STS 266 182 B6 fJ
224 148 94 CCH 267 183 B7 .
225 149 95 MW 270 184 B8 ,
226 150 96 SPA 271 185 B9 1

227 151 97 EPA 272 186 BA Q

233 155 9B CSI 273 187 BB »

234 156 9C ST 274 188 BC 1/4

235 157 9D OSC 275 189 BD 1/2

236 158 9E PM 276 190 BE 3/.4

237 159 9F APC 277 191 BF i
240 160 AO NBSP 300 192 CO A
241 161 A1 i 301 193 C1 A
242 162 A2 ¢ 302 194 C2 A
243 163 A3 £ 303 195 C3 A
244 164 A4 Xl 304 196 C4 A
245 165 AS ¥ 305 197 C5 A
246 166 A6 I 306 198 C6 .IE

(Continued)

B-4 ISO Latin-l Table

Table B-1. ISO Latin-1 Codes (Cont.)

oct dec hex character oct dec hex character

307 199 C7 <; 347 231 E7 C
310 200 C8 13 350 232 E8 e
311 201 C9 E 351 233 E9 e
312 202 CA E 352 234 EA e
313 203 CB E 353 235 EB e
314 204 CC I 354 236 EC i
315 205 CD f 355 237 ED i
316 206 CE I 356 238 EE 1
317 207 CF i 357 239 EF i
320 208 DO f) 360 240 FO (}

321 209 D1 N 361 241 F1 fi
322 210 D2 a 362 242 F2 6
323 211 D3 6 363 243 F3 6
324 212 D4 a 364 244 F4 0
325 213 D5 6 365 245 F5 6
326 214 D6 6 366 246 F6 0
327 215 D7 x 367 247 F7
330 216 D8 0 370 248 F8 (3

331 217 D9 U 371 249 F9 il
332 218 DA -0 372 250 FA U

333 219 DB 0 373 251 FB ii
334 220 DC D 374 252 FC ii

335 221 DD Y 375 253 FD Y
336 222 DE P 376 254 FE P
337 223 DF B 377 255 FF Y
340 224 EO a
341 225 E1 a
342 226 E2 a
343 227 E3 a
344 228 E4 a
345 229 E5 a
346 230 E6 re

--88--

ISO Latin-l Table B-5

Appendix C

Extensions to Standard Pascal

This appendix describes Domain Pascal's extensions to ISO standard Pascal.

e.l Extensions to Program Organization

Chapter 2 describes the elements that make up a Pascal program. This section describes
the extensions to standard Pascal.

C.l.l Identifiers

Although an identifier must begin with a letter, you can include underscores U or dollar
signs ($) in the name. For example, mailing_$lists is a legal identifier.

C.1.2 Integers

You can specify integers in any base from 2 to 16. To do so, use the following syntax:

base#value

For base, enter an integer from 2 to 16. For value enter any integer within that base. If
the base is greater than 10, use the letters A through F (or a through f) to represent digits
with the values 10 through 15.

For example, consider the following integer constant declarations:

half life -
hexagrams
luck
wheat

:= 5260;
'- 16#lc6; .-
:= 2#10010;
'- 8#723; .-

/* default (base 10) */
/* hexadecimal (base 16) */
/* binary (base 2) */
/* octal (base 8) */

Extensions to Standard Pascal C-l

I

C.l.3 Comments

You can specify comments in any of the following three ways:

{ comment}
(. comment .)
"comment"

(The spaces before and after the comment delimiters are for clarity only; you don't have
to include these spaces.) For example, here are three comments:

{ This is a comment. }
(* This is a comment. *)
"This is a comment."

Unlike standard Pascal, the comment delimiters of Domain Pascal must match. For exam­
ple, a comment that starts with a left brace doesn't end until the compiler encounters a
right brace. Therefore, you can nest comments, for example:

{ You can (*nest*) comments inside other comments. }

The Domain Pascal compiler ignores the" text of the comment, and interprets the first
matching delimiter as the end of the comment.

Standard Pascal does not permit nested comments. If you want to use unmatched comment
delimiters, as standard Pascal allows, you must compile with the -iso switch. Chapter 6
describes that switch.

Finally, Domain Pascal permits you to put compiler directives inside comment delimiters.
However, if you do so, you cannot use spaces; see the listing for "Compiler Directives" in
Chapter 4 for details.

C.l.4 Sections

Domain Pascal allows you to assign code and data in your program to a nondefault section.
A section is a named contiguous area of main memory.

C.l.S Declarations

C-2

You can declare the label, const, type, and var declaration parts in any order. You can
specify the declaration parts an unlimited number of times.

In addition to label, const, type, and var declaration parts, you can also declare a define
part, which is detailed in Chapter 7, an attribute part, which is detailed in Chapter 3, and
a routine options part, which is detailed in Chapter S.

Extensions to Standard Pascal

C.I.6 Constants

You can set a constant equal to a real, integer, string, char, or set expression. The con­
stant can also be the pointer expression nil. The expression can contain the following types
of terms:

• A real number, an integer, a character, a string, a set, a Boolean, or nil

• A constant that has already been defined in the const declaration part (note that
you cannot use a variable here)

• Any predefined Domain Pascal function (for example, chr, sqr, Ishft, sizeof), but
only if the argument to the function is a constant, or, in the case of sizeof, an
array.

• A type transfer function

You can optionally separate these terms with any of the following operators:

Operator Data Type of Operand

+, -, • Integer, real, or set

/ Real

mod, diy, I, &, - Integer

For example, the following const declaration part defines ten constants:

CONST

C.I.7 Labels

x 10;
y 100;
z x + y;
current_year
leap_offset
bell
BEL
alert
pathname
pathname_len

1994;
(current_year mod 4);
chr(7);
7
'WARNING' (BEL, BEL)
'//et/go_home';
sizeof(pathname);

In standard Pascal, only integers can be used as labels. In Domain Pascal, you can use
both identifiers and integers as labels.

Extensions to Standard Pascal C-3

C.2 Extensions to Data Types

Chapter 3 describes the data types supported by Domain Pascal. This section describes the
extensions that Domain Pascal supports.

C.2.1 Initializing Variables in the Var Declaration Part

Domain Pascal lets. you initialize variables in the var declaration part. You can initialize
integer, real, Boolean, char, subrange, set, enumerated, array, record, and pointer vari­
ables with an assignment statement following the data type; for example:

VAR
x integer:= 17;
r real:= 5.3E-14;
a array[1 .. 7] of char := 'Wyoming';

For arrays in particular, Domain Pascal supports many extensions for simplifying initializa­
tion. See Chapter 3 for details.

C.2.2 Integers

Domain Pascal supports the following two nonstandard predeclared integer data types:

C.2.3 Reals

• Integer16 - Use it to declare a signed 16-bit integer. (Integer and integer16
have identical meanings.)

• Integer32 - Use it to declare a signed 32-bit integer. A signed 32-bit integer
variable can be any value from -2147483648 to +2147483647.

Domain Pascal supports the following two nonstandard predeclared real data types:

• Single - Same as real.

• Double - Use it to declare a signed double-precision real variable. Domain Pas­
cal represents a double-precision real number in 64-bits. A double-precision real
variable has approximately 16 significant digits.

C.2.4 Pointer Types

In addition to the standard pointer type, Domain Pascal supports a univ _ptr type and a
special pointer type that points to procedures and functions.

C-4 Extensions to Standard Pascal

The predeclared data type univ ytr is a universal pointer type. A variable of type
univ_ptr can point to a variable of any type. You can use a univytr variable in the fol­
lowing contexts only:

• Comparison with a pointer of any type

• Assignment to or from a pointer of any type

• Formal or actual parameter for any pointer type

• Assignment to the result of a function

Domain Pascal supports a special pointer data type that points to a procedure or a func­
tion. By using procedure and function data types, you can pass the addresses of routines
obtained with the addr predeclared function. (See the addr listing of Chapter 4 for a de­
scription of this function.) You may only obtain the addresses of top-level procedures and
functions; you cannot obtain the addresses of nested or explicitly declared internal proce­
dures and functions. (See Chapter 5 for details about internal procedures.)

C.2.S Variable-Length Strings

Domain supports variable-length strings, which are declared with the varying type specifier.
Unlike fixed-length arrays, the size of variable-length strings can change dynamically dur­
ing program execution.

C.2.6 Named Sections

By default, Domain Pascal stores all variables declared in· the var declaration part at the
program or module level to the . data section. However, Domain Pascal enables you to as­
sign variables to sections other than . data. Named variable sections are synonymous with
named common blocks in FORTRAN.

C.2.7 Variable and Type Attributes

Domain Pascal supports attributes for variables and types. These attributes supply additional
information to the compiler when you declare a variable or a type.

The volatile, atomic, and device attributes enable you to turn off certain optimizations
that would otherwise ruin programs that access device registers or shared memory locations.
The address attribute associates a variable with a specific virtual address. Alignment and
size attributes enable you to enhance your program's performance by specifying methods
for storage allocation. Domain Pascal supports the following alignment attributes: aligned,
natural. Domain Pascal supports the following size attributes: bit, byte, word, long,
quad.

Domain Pascal supports an attribute declaration that allows you to define attributes.

Extensions to Standard Pascal C-S

C.2.S Aligned Record and Unaligned Record

Domain Pascal supports aligned record and unaligned record data types that you can use
to make sure that records receive the same layout in all alignment environments.

C.3 Extensions to Code

Chapter 4 describes the action part (the executable block) of a Pascal program. This sec­
tion describes the extensions.

C.3.1 Exponentiation Operator

Domain Pascal supports an exponentiation operator in the following form:

mantissa· • exponent.

C.3.2 Bit Operators

Domain Pascal supports four bit operators for bitwise and, not, xor, and or operations.
These operators perform Boolean operations by comparing the bits in each bit position of
two integer arguments. For details on these operators see the "Bit Operators" listing in
Chapter 4.

C.3.3 Boolean Short-Circuit Operators

Domain Pascal supports the and then and or else operators. You can use and then and
or else to guarantee that Domain Pascal will evaluate Boolean expressions in the order that
you write them. They also guarantee "short-circuit" evaluation; that is, at run time, the
system will only evaluate as many expressions as is necessary. For details, see the and and
the or listings in Chapter 4.

C.3.3 Bit-Shift Functions

Domain Pascal supports the following three bit-shift functions:

• rshft, which shifts the bits in an integer a specified number of spaces to the right.

• arshft, which shifts the bits in an integer a specified number of spaces to the right
and preserves the sign of the integer.

• Ishft, which shifts the bits in an integer a specified number of spaces to the left.

For syntax details, see the rshft, arshft, and Ishft listings in Chapter 4.

C-6 Extensions to Standard Pascal

C.3.4 Compiler Directives

Domain Pascal supports the compiler directives shown in Table 4-11.

You can place a directive anywhere in your program. To use a directive, specify its name
in a comment or as a statement. For example, all of the following formats are valid:

{%directive}
(. %directive·)
%directive

If you specify a directive within a comment, the percent sign must be the first character
after the delimiter. (Spaces count as characters.)

Domain Pascal supports a predeclared conditional variable, _BFMT __ COFF, whose value
is set to true whenever the compiler is generating COFF (Common Object File Format)
files.

Domain Pascal supports a pair of predeclared conditional variables that you can use to find
out whether the compiler is generating code for the 68000 family of workstations or for the
Series 10000 workstation. These variables are: _ISP __ M68K (for 68000 code genera­
tion) and _ISP __ A88K (for Series 10000 code generation).

C.3.S Addr Function

Domain Pascal supports an addr function that returns the virtual address of the specified
variable or routine. For syntax details, see the addr listing of Chapter 4.

C.3.6 Align Function

Domain Pascal supports an align function that copies an expression to memory and aligns
it to match the specification of a formal parameter of an external routine.

C.3.7 Max and Min Functions

Domain Pascal supports a max and a min function for finding the larger and smaller of
two operands, respectively.

C.3.8 Discard Procedure

Domain Pascal supports a discard procedure for explicitly discarding the computed value
of an expression. It usually is used with a function (which in standard Pascal must return a
value) for which the value is not needed. The optimizer may eliminate the computation
and issue a warning message if the return value isn't used, but discard explicitly throws
away the computed value and so eliminates the warning message.

Extensions to Standard Pascal C-7

C.3.9 Routines for Variable-Length Strings

Domain Pascal supports four routines for manipulating variable-length strings:

append Concatenates two or more strings. The destination string must be a
variable-length string.

ctop

ptoc

Adjusts the current length of a variable-length string based on the
presence of a terminating null character.

Appends a terminating null character to the body of a variable-length
string.

substr Finds a substring in a variable-length or fixed-length string.

C.3.10 1/0 Procedures

Domain Pascal supports the 1/0 procedures of standard Pascal, plus the following four pro­
cedures:

• Open, which opens permanent files for I/O access.

• Close, which explicitly closes an open file.

• Find, which locates a specific element in a record-structured file.

• Replace, which modifies an existing element in a record-structured file.

As in standard Pascal, you can create a temporary file with the rewrite procedure; how­
ever, by using the open procedure, you can create a permanent file. (Here, "permanent"
means a file that exists even after the program terminates.)

When a program terminates, the operating system automatically closes any open files. How­
ever, because an open file can clog system resources, Domain Pascal provides a close pro­
cedure that allows you to close a file from within your program.

The find procedure locates records from a record-structured fiie. Records here refer to
the elements in a file whose file variable was declared as a file of data type. By using re­
place in combination with find, you can replace an existing record.

From a Domain Pascal program, you can easily access Input Output Stream calls (known
as lOS calls) and formatting calls (known as VFMT calls).

For syntax details, see the open, close, find, and replace listings in Chapter 4. For an
overview of 1/0 (including lOS calls and VFMT calls), see Chapter 8.

C-8 Extensions to Standard Pascal

C.3.12 Loops

Domain Pascal supports for, while, and repeat, which are the three looping statements of
standard Pascal. Domain Pascal also supplies the following two additional statements for
further control within a loop:

• A next statement for skipping over the current iteration of a loop

• An exit statement for unconditionally jumping out of the current loop

For syntax details, see the next and exit listings of Chapter 4.

C.3.13 Range of a Specified Data Type

Domain Pascal supports

• A firstof function for returning the first possible value of a specified scalar data
type

• A lastof function for returning the last possible value of a specified scalar data
type

For syntax details, see the firstof and lastof listings in Chapter 4.

C.3.14 Integer Subrange Testing

By default, Domain Pascal does not check the value of input data to see that it falls within
the defined range of a variable declared as a subrange of integers. To determine whether
or not a specified value is within the defined integer subrange, you can use the in_range
function. For syntax details, see the in_range listing in Chapter 4.

C.3.1S Extensions to Read and Readln

In addition to allowing input into any real, integer, char, or subrange variable, as standard
Pascal allows, Domain Pascal's read and readln also allow input to a Boolean or enumer­
ated variable.

C.3.16 Premature Return from Routines

As in standard Pascal, Domain Pascal returns control to the calling routine after executing
the last line in the called routine. If you want to return to the· calling routine before
reaching the last line, you can issue a return statement. For syntax details, see the return
listing in Chapter 4.

Extensions to Standard Pascal C-9

C.3.17 Memory Allocation of a Variable

Domain Pascal supports a sizeof function. This function returns the size (in bytes) that a
data type (predeclared or user-defined), variable, constant, or string inhabits in main
memory.

C.3.18 Extensions to With

Domain Pascal supports the standard format of with as well as the following alternative
format:

with vl:identifierl, v2:identifier2, ... vN:identifierN do
stmnt;

An identifier is a pseudonym for the record variable v. To specify a record, use the identi­
fier instead of the record variable v. Furthermore, to specify a field in a record, use identi­
fier.field_name rather than v.field_name.

For example, given the following record declaration

basketball_team record
mascot
height
end;

array[1 .. 15] of char;
single;

consider the following three methods of assigning values:

readln(basketball_team.mascot);
readln(basketball_team.height);

WITH basketball_team DO
begin

readln(mascot);
readln(height);

end;

WITH basketball_team : B DO
begin

end;

readln(B.mascot);
readln(B.height);

{Not using WITH.}

{Using standard WITH.}

{Using extension to WITH.}

The with extension is useful for working with long record names when two records contain
fields that have the same names.

C-IO Extensions to Standard Pascal

C.3.19 Type Transfer Functions

Domain Pascal supports type transfer functions which enable you to change the type of a
variable or expression within a statement. To perform a type transfer function, use any
user-created or standard type name as if it were a function name in order to "map" the
value of its argument into that type.

With one exception, the size of the argument must be the same as the size of the destina­
tion type. (Chapter 3 describes the size of each data type). This size equality is required
because the type transfer function does not change any bits in the argument. Domain Pas­
cal just "sees" the argument as a value of the new type. The one exception is that integer
subranges are compatible.

C.3.20 Extensions to Write and Writeln

Domain Pascal allows you to specify a negative field width for chars, strings, and arrays of
chars. Also, if you specify a one-part field width for a real number, Domain Pascal adds
or removes leading blanks. See the listing for write and writeln in Chapter 4 for details.

C.4 Extensions to Routines

Chapter 5 describes procedures and functions. The term "routine" means either procedure
or function. Also, the term "argument" refers to the data passed to a routine while "pa­
rameter" means the templates for the data to be received.

The following subsections describe Domain Pascal's extensions to routine calling.

C.4.1 Direction of Data Transfer

In standard Pascal, you cannot specify the direction of parameter passing. However, Do­
main Pascal supports extensions to overcome this problem. You can use the following key­
words in your routine declaration:

• In - This keyword tells the compiler that you are going to pass a value to this
parameter, and that the routine is not allowed to alter its value. If the called rou­
tine does attempt to change its value (that is, use it on the left side of an assign­
ment statement), the compiler issues an "Assignment to IN argument" error.

• Out - This keyword tells the compiler that you are not going to pass a value to
the parameter, but that you expect the routine to assign a value to the parameter.
It is incorrect to try to use the parameter before the routine has assigned a value
to it, although the compiler does not issue a warning or error in this case.

Extensions to Standard Pascal C-ll

If the called routine does not attempt to assign a value to the parameter, the com­
piler may issue a "Variable was not initialized before this use" warning. This· could
occur if your routine only assigns a value to the parameter under certain condi­
tions. If that is the case, you should designate the parameter as var instead of
out.

In some cases, the compiler cannot determine whether all paths leading to an out
parameter assign a value to it. If that happens, the compiler does not issue a
warning message.

• In out - This keyword tells the compiler that you are going to pass a value to the
parameter, and that the called routine is permitted to modify this value. It is in­
correct to call the routine before assigning a value to the parameter, although the
compiler does not issue a warning or error in this case. The compiler also doesn't
complain if the called routine does not attempt to modify this value.

C.4.2 Universal Parameter Specification

By default, Domain Pascal and standard Pascal check to: ensure that the argument you pass
to a routine has the same data type as the parameter you defined for the routine. As an
extension, you can tell Domain Pascal to suppress this type checking. You do this by using
the keyword univ prior to a type name in a parameter list. By using univ, you can pass
an argument that has a different data type than its corresponding parameter.

Univ is especially useful for passing arrays.

C.4.3 Routine Options

Standard Pascal supports a forward option. Domain Pascal supports the forward option,
and also supports the following routine options:

• Extern - By default, Pascal expects a called routine to be defined within the
source code file where it is called. The extern option tells the compiler that the
routine is possibly defined outside of this source code file.

• Internal - By default, all routines defined in modules become global symbols.
But, if you declare the routine with the internal option, the compiler makes the
routine a local symbol.

• Variable - By default, you must pass the same number of arguments to a routine
each time you call the routine. However, by using the variable option in a rou­
tine declaration,. you can pass a variable number of arguments to the routine.

• Abnormal - This option warns the compiler that a routine can cause an abnor­
mal transfer of control.

C-12 Extensions to Standard Pascal

• VaI_param - By default, Domain Pascal passes arguments by reference. How­
ever, by using the vaI_param option, you tell Domain Pascal to pass arguments by
value.

• N osave - This option indicates that the contents of data registers D2 through D7,
address registers A2 through A4, and floating-point registers FP2 through FP7 will
not be saved when a called assembly language routine finishes and returns to the
Domain Pascal program. However, two registers are preserved: AS, which holds
the pointer to the current stack area, and A6, which holds the address of the cur­
rent stack frame.

• Noreturn - This option specifies an unconditional transfer of control; once a rou­
tine marked noreturn is called, control can never return to the caller.

• DO_return - By default, a Pascal function returning the value of a pointer type
variable puts that value in address register AO. DO_return tells the compiler to put
the value in AO and data register DO.

• AO_return - Specifying AO_return tells the compiler to put any values returned
from a called routine into AO and also to load return values to the calling routine
from AO.

• Cyaram - Specifying C_param implies DO_return and val_param and also tells
the compiler to pass record data types by value, rather than by reference.

Domain Pascal supports a routine_option declaration part that allows you to define your
own names for groups of routine options. Furthermore, Domain Pascal provides a special
name, default_routine_options, that allows you to define the default routine options for
every routine in a module.

C.4.4 Routine Attribute List

You can specify a routine attribute list when you declare a routine. Within the routine at­
tribute list, . you can specify a nondefault section name.

A "section" is a named contiguous area of an executing object. (Refer to the Domain/OS
Programming Environment Reference for full details on sections.) By default, the compiler
assigns code to the . text section and data to the . data section. Thus, by default, all code
from every routine in the program is assigned to . text, and all data from every routine in
the program is assigned to .data.

However, Domain Pascal permits you to override the default of .text and .data on a
routine-by-routine basis. (You can also override the defaults on a variable-by-variable or
module-by-module basis.) This makes it possible to organize the run-time placement of
routines so that logically related routines can share the same page of main memory and
thus reduce page faults. Conversely, you can declare a rarely called routine as being in a
separate section from the frequently called routines.

Extensions to Standard Pascal C-13

C.S Modularity

Domain Pascal allows you to break your program into separately compiled source files. Af­
ter compiling all the source files, you can bind the resulting objects into one executable
object file. Chapter 7 documents the details.

C.6 Other Features of Domain Pascal

Domain Pascal supports many other features, such as the ability to call routines written in
other Domain languages. However, the remaining features are all implementation­
dependent features, and not actual extensions.

----88----

C-14 Extensions to Standard Pascal

Appendix D

Deviations from Standard Pascal

This appendix describes Domain Pascal's deviations from ISO standard Pascal, and docu­
ments the sections in the ISO standard document to which Domain Pascal does not com­
pletely adhere.

D.I Deviations from the Standard

Domain Pascal does not include certain features of standard Pascal, and this list documents
the deviations:

• Standard Pascal does not limit the length of identifiers; Domain Pascal limits iden­
tifiers to 4096 characters.

• In standard Pascal the file list in the program heading is optional; Domain Pascal
ignores the file list in the program heading.

• Standard Pascal does not limit the number of dimensions for arrays; Domain Pas­
cal allows arrays of up to eight dimensions only.

• Standard Pascal supports packed arrays, packed records, and packed sets.
Domain Pascal does not support packed sets, but you can get around this restric­
tion by putting small sets in packed records. See Section 3.9.2 for further infor­
mation on packing small sets within a packed record.

• Standard Pascal requires that certain errors in code generate run-time faults. Ex­
amples of such errors include dereferencing NIL pointers and exceeding the
bounds of an array. However, if your program contains one of these errors, but
the statement with the erroneous code has no effect elsewhere in the program, the
optimizer may eliminate the code from your program. In this case, the run-time
fault will not occur.

Deviations from Standard Pascal D-l

D.2 Deviations from Specific Sections of the Standard

The following section lists the sections in the ISO standard document (ISO 7185-1982) to
which Domain Pascal does not completely adhere and the ways in which Domain Pascal
does not adhere.

6.1.2

6.1.5

6.1.8

6.2.2

6.4.3.3

6.4.5

You may redeclare NIL.

You are not required to include a sequence of digits after a period in
a floating-point number.

You are not required to leave a blank between a number and a word­
type operator. For example, Domain Pascal accepts the following:

result := 10mod 1;

The following type of declaration works under Domain Pascal:

TYPE
rec

end;

record
ptr
DlY_var

my_var = rec;

Amy_var;
integer

There is no requirement that all values of a tag-type in a record ap­
pear as case constants.

Domain Pascal does not detect a reference to an inactive variant field.
Also, it does not mark variant fields as inactive when a new variant
tag becomes active.

Subranges of the same type that are defined with different ranges are
considered identical.

Domain Pascal considers structurally identical types to be identical.
For example, the following are identical under Domain Pascal:

TYPE
first = array[1 .. 20] ofinteger32;
second = array[1 .. 20] of integer32;

Also, Domain Pascal ignores the keyword packed, so structurally iden­
tical sets are considered identical.

D-2 Deviations from Standard Pascal

6.4.6

6.5.5

6.6.3.3

You may assign structured types containing a file component to each
other.

You may make an assignment from an integer expression that includes
a value outside one of the variables' declared subranges. Also, you
may pass an integer argument that is outside the corresponding pa­
rameter's declared subrange. In addition, Domain Pascal considers sets
of different subranges from the same enumerated type to be compat­
ible for assignment and as parameters.

Domain Pascal does not detect when a field variable passed as a var
parameter is modified. It also does not detect a modification to a file
variable when a reference to the buffer exists.

You may pass the selector of a variant or a component of a packed
variable as a var parameter. Also, Domain Pascal accepts a procedure
call like the following where x is declared in the procedure heading as
being a var parameter:

proc_name ((x)) ;

6.6.3.5, 6.6.3.6

6.6.3.6

6.6.5.2

6.6.5.3

Domain Pascal treats integer and subrange of integer as identical.

Domain Pascal considers the following to be identical:

VAR VAR
a integer; a,b integer;
b integer;

Domain Pascal does not detect a put of an undefined buffer variable
at compile time. It does not consider a read of an enumerated type to
be an error, or an assignment from a file variable of an enumerated
type followed by a get to be an error. You may write an integer ex­
pression that includes a value outside one of the variables' declared
subranges. Also, you may make an assignment from an integer expres­
sion that includes a value outside one of the file variables' declared
subranges.

You may dispose a pointer that is active because it has been
dereferenced as a parameter or in a with block. In addition, Domain
Pascal does not report an error if you use a pointer variable after you
have disposed of it or if you dispose of a dangling pointer (that is, a
pointer with an address assigned to another pointer).

Deviations from Standard Pascal D-3

6.6.5.4

6.6.6.2

6.6.6.3

6.6.6.4

6.7.2.2

6.7.2.4

6.8.1

6.8.3.5

6.8.3.9

You also may use a record allocated with a long form of new as an
operand in an expression or as a variable in an assignment statement.
You may pass as an argument a variable that was allocated with new
and that uses variant tags.

Domain Pascal does not report an error if you use different tags for a
variable in new and dispose. It also does not detect the activation of
a variant on a variable that new allocated with a different tag, or if
your program includes illegal variant tags in a dispose.

The pack procedure accepts a normal array where packed is ex­
pected, and a packed array where a normal array is expected.

In pack, Domain Pascal does not detect an uninitialized component in
the unpacked array. Similarly, in unpack, Domain Pascal does not
detect an uninitialized component in the packed array.

On some workstations, the sqr function does not detect overflow.

On some workstations, trunc and round do not detect overflow.

Succ, pred, and chr do not detect overflow.

Domain Pascal does not detect an overflow or underflow on integer
arithmetic. Also, it allows you to supply a negative value for j in an
expression like the following:

i mod j

Domain Pascal does not detect operations on overlapping sets with
incompatible elements.

Domain Pascal permits jumps between branches of a case statement
and from one structured statement into the middle of another.

Domain Pascal does not detect the lack of a case statement constant
corresponding to a run-time case value.

Domain Pascal does not detect an underflow of an assignment from
pred to a for statement index variable. Also, it does not issue an er­
ror if there is an overflow in the final value of a for statement index
variable.

D-4 Deviations from Standard Pascal

6.9.1

6.9.3.1

6.10

Domain Pascal does not detect the possibility that an inner block will
change the value of a for statement's index variable. Also, Domain
Pascal allows a non-local variable, a formal parameter, or a value pa­
rameter to be used as a for statement's index variable. You also can
use a program level global variable as the index variable for a for
statement that resides in an inner block.

Domain Pascal does not detect an overflow of a subrange boundary
for a read statement.

You may supply a nonpositive field width or a nonpositive fractional­
digits field width to a write or writeln.

You don't have to declare input and output in a program heading to
use them in the program. You can, however, repeat parameters in a
program heading such as

program testing (output, output);

or redeclare program parameters as some type other than a file. Also,
you don't have to declare program parameters in the var declaration
part of your program.

----88----

Deviations from Standard Pascal D-S

Appendix E

Systems Programming Routines

Domain Pascal includes several routines designed specifically for systems programmers' use.
Systems programmers are those who need to do very low-level work in their programs and
who need direct access to specific registers and bits within those registers. They frequently
write some programs in Pascal and some in assembly language.

If you are a systems programmer, you might use these routines when writing device drivers,
or when doing other low-level manipulations of the hardware status register.

E.l Overview

Table E-1 briefly describes the available systems programming routines. all of which are
extensions to standard Pascal. A more complete explanation follows the table.

Table E-1. Systems Programming Routines

Routine Action

disable Turns off the interrupt enable in the hardware status register.

enable Turns on the interrupt enable in the hardware status register.

set_sr Saves the current value of the hardware status register and then
inserts a new value.

Systems Programming Routines E-l

E.2 Restrictions for Use

All the routines described in this appendix generate privileged instructions and may only be
executed from supervisor mode. If you try to run a program using one of these routines
while in user mode, you get a privilege-violation error.

E-1 Systems Programming Routines

Disable Turns off the interrupt enable in the hardware status register. (Extension)

FORMAT

disable

ARGUMENT

{disable is a procedure.}

Disable takes no arguments.

DESCRIPTION

Disable is a built-in procedure for systems programmers' use. It turns off the interrupt en­
able in the hardware status register and should be used with its complementary procedure
enable.

By turning off the interrupt enable, disable allows you to prevent an interrupt from coming
in while the program is in a critical section. After the critical section finishes, you should
use enable to turn the interrupt enable back on.

The disable-enable pair look like this in code:

disable;

{ Critical section. }
{ No interrupts allowed while this section is executing. }

enable;

If you mistakenly use only disable, your program win essentially grind to a halt since no
interrupt signals will be able to get to it. You should only use the disable-enable pair
around very small sections of code.

Systems Programming Routines E-3

Enable Turns on the interrupt enable in the hardware status register. (Extension)

FORMAT

enable {enable is a procedure.}

ARGUMENT

Enable takes no arguments.

DESCRIPTION

Enable is a built-in procedure for systems programmers' use. It turns on the interrupt en­
able in the hardware status register and usually is used with its complementary procedure
disable.

By turning on the interrupt enable, enable allows your program to receive interrupts. Usu­
ally, disable will have been used to prevent the reception of interrupts during a critical
section of code. After the critical section finishes, enable lets the interrupts flow.

The disable-enable pair look like this in code:

disable;

{ Critical section. }
{ No interrupts allowed while this section is executing. }

enable;

Because the interrupt enable is turned on by default, there is no effect if you mistakenly
use only enable in your program.

E-4 Systems Programming Routines

Set sr Saves the current value of the hardware status register and then inserts a new one.
(Extension)

FORMAT

oldsr := set_sr(newsr); {set_sr is a function.}

ARGUMENT

oldsr The old value of the hardware status register.

newsr The new value of the hardware status register.

DESCRIPTION

Set_sr is a built-in function for systems programmers' use. It reads the hardware status
register (SR) and replaces its current value with newsr. The original value then is assigned
to oldsr. This translates to assembly language code something like this:

move.w
move.w
move.w

SR,dO
newsr,SR
dO,oldsr

The function eliminates six instructions in a time-critical path.

-------88-------

Systems Programming Routines' E-S·

Appendix F

Optimizing Floating-Point
Performance on MC68040-Based

Domain Workstations

This appendix describes how to obtain the best floating-point performance on the new Do­
main MC68040-based workstations, such as the HP Apollo 9000 Series 400 Model 425t or
433s.

NOTE: The performance improvements described in this appendix are
estimates for typical floating-point applications based on stan­
dard hardware configurations and standard software configura­
tions. The performance improvements on your system, if any,
will probably be different from (though along the lines of) the
improvements described here.

The Motorola MC68040 microprocessor chip features floating-point performance almost an
order of magnitude greater than that of its predecessor, the 68030/68882. Floating-point­
intensive application binaries that currently run on Domain platforms will experience an
immediate and dramatic performance increase when run on the new Domain 68040-based
platforms. The increase is usually in the range of two to six times over the performance of
the DN4500 Personal Workstation.

Floating-point arithmetic on 68040-based Domain platforms is nearly identical to floating­
point arithmetic on 68020/68881-based and 68030/68882-based platforms, with only mi­
nor differences. Also, how you compile an application affects floating-point performance
on the two platforms. In the following sections, we describe these functional and perform­
ance differences and tell you how to maximize floating-point performance on the
68040-based Domain workstations.

Floating-Point Performance on MC68040-Based Workstations F-l

We discuss the following topics:

• Instruction emulation

• How to determine if an application relies heavily on instruction emulation

• How instruction emulation affects performance

• What steps to take for your application

• What it means if you get different results on the 68040 and the 68020/68030

F.1 Instruction Emulation

The 68040 has an on-chip floating-point unit that directly supports only a subset of the
68881/68882 architecture. Floating-point functionality that is not directly supported in
hardware is provided through system traps; these system traps invoke a kernel routine that
emulates the missing functionality. The emulation routine supports some instructions in the
68881/68882 instruction set and some data types.

Because software emulation is inherently slower than direct hardware execution, emulated
instructions execute more slowly than hardware instructions. To maximize floating-point
performance, you should either compile your application so that it has no emulated instruc­
tions, or determine that it does not have enough of them to degrade the performance of
the code. We describe how to do this in the following sections.

F.2 How to Determine If an Application Relies Heavily on
Instruction Emulation

The only applications with emulated instructions are those that were compiled with the
-cpu 3000 option. (We now call this option ..;cpu rnathchip. For information about the
-cpu option, see Section 6.4.9.) Applications that may contain emulated instructions in-
clude

• FORTRAN applications

• Pascal applications

• C applications that are compiled with the -D_BUILTINS option (/bin/cc) or the
-def _BUILTINS option (/corn/cc) or that include the file <apollo/builtins.h>

The emulated instructions correspond to the following arithmetic intrinsic functions listed in
Table F-1.

F-2 Floating-Point Performance on MC68040-Based Workstations

Table F-l. Emulated Intrinsic Functions

FORTRAN C Pascal

SIN, DSIN sinO sin

COS,DCOS cosO cos

TAN,DTAN tan 0 --
ATAN,DATAN atanO arctan

EXP, DEXP expO exp

ALOG,DLOG logO In

ALOGI0, DLOGI0 log100 --
AINT, DINT -- --

If an application does not use any of these intrinsics, then it will run nearly optimally on
both the 68040 and the 680xO/6888x when compiled with -cpu mathchip.

Applications that are compiled with -cpu any, the old default -cpu argument, do not con­
tain any emulated instructions. However, use -cpu any only if your code must run on all
existing Domain 680xO-based workstations because this argument imposes a severe per­
formance penalty, usually a greater penalty than that caused by instruction emulation.

Intrinsic functions other than those listed in Table F-l (such as ASIN, ACOS, and hyper­
bolic functions) are always performed by run-time libraries that use only hardware­
executed floating-point instructions. For example, if your FORTRAN program calls the
SINH intrinsic, the, compiler never generates the FSINH instruction; instead, it generates a
call to the ftn_$dsinh routine.

F.3 How Instruction Emulation Affects Performance

As a rule of thumb, the 68040 will emulate an instruction at least as fast as a 68882 run­
ning at the equivalent clock frequency would execute it directly. What we call a perform­
ance penalty on 68040-based systems is actually unrealized performance potential, not per­
formance degradation. Unchanged and un-recompiled applications will almost always real­
ize some performance increase on the 68040 above what 68030-based and 68020-based
systems delivered.

We cannot predict what kinds of performance increases you can obtain by recompiling
your application for the 68040 unless we know the details of your application. We can
offer some general guidelines, however. The following subsections describe the perform­
ance ratio for an application on a 68040-based system when you recompile with various
-cpu arguments.

Floating-Point Performance on MC68040-Based Workstations F-3

F.3.1 Changing from -cpu 3000 (-cpu mathchip) to -cpu mathlib or -cpu
mathlib_srlO

If your application makes intensive use of SIN, COS, TAN, ATAN, EXP, or LOG, and is
currently compiled with -cpu 3000, then the performance boost from recompiling with
-cpu mathlib or -cpu mathlib_srlO will probably be between one and three times, with
most applications improving about 1.5 times. This boost results from removing emulated
instructions from your code.

F.3.2 Changing from -cpu any to -cpu mathlib or -cpu mathlib_srlO

If your application is currently compiled with -cpu any, regardless of the intrinsics used,
then the performance boost from recompiling with -cpu mathlib or -cpu mathlib_srlO
will probably be approximately two times, with some applications improving up to four
times. This boost is due to the superior performance of inline floating-point instructions.

F.3.3 Changing from -cpu any to -cpu mathchip (-cpu 3000)

If your application makes intensive use of SIN, COS, TAN, ATAN, EXP, or LOG, and is
currently compiled with -cpu any, then the performance boost from recompiling with -cpu
mathchip will probably be between 0.7 times and four times, with most applications im­
proving about 1.3 times. The use of inline floating-point instructions improves perform­
ance, but inline emulated instructions degrade performance. We derive this estimate by
combining the previous figures.

NOTE: In the worst case, performance may actually degrade when you
recompile an application from -cpu any to -cpu mathchip.
However, the same recompilation may significantly improve per­
formance on 68020-based and 68030-based systems.

F.4 What Steps to Take for Your Application

You have two separate decisions to make:

• Whether to recompile

• If you recompile, which -cpu argument to use

F.4.1 Should You Recompile?

When you decide whether to recompile for the 68040, you should consider not only the
performance to be gained on the 68040, but also the effect the recompilation will have OIl
68020-based and 68030-based systems. Consider the proportion of pre-68040 and 68040
systems your application runs on today, and what you expect in the future. Targeting the

F-4 Floating-Point Performance on MC68040-Based Workstations

pre-68040 systems may yield better performance for the customer today, but recompiling
for the 68040 now may well yield big dividends as the percentage of 68040-based installed
Domain workstations increases.

If you compiled your application with -cpu any, then you are probably incurring a severe
performance penalty on all 68020-based, 68030-based, and 68040-based systems. You
should recompile unless you have to support older Apollo architectures (for example, the
DN460 workstation or the PEB).

If you compiled your application with -cpu 3000 or one of its equivalents, then you should
recompile if you think your application performs much instruction emulation on the 68040.

F.4.2 If You Recompile, Which -cpu Argument Should You Use?

If your application needs to run optimally only on 68040-based systems, then compile with
-cpu mathIib.

If your application needs to run optimally on 68020-based and 68030-based systems, but
you don't care about its performance on the 68040, then compile with -cpu mathchip. If
you previously compiled your application with -cpu 3000 (equivalent to -cpu mathchip),
you do not need to recompile.

If your application needs to run well on 68020-based, 68030-based, and 68040-based sys­
tems, and you think it does not perform much instruction emulation on the 68040, then
you may compile with either -cpu mathchip, -cpu mathlib_srlO, or -cpu mathlib. If
you think your application performs much instruction emulation on the 68040, then recom­
pile with -cpu mathlib_srlO or -cpu mathlib. Use -cpu mathlib_srlO if your code must
run on 68020-based and 68030-based systems with a Domain/OS release earlier than
SR10.3; otherwise, use -cpu mathlib.

Figure F-l shows how to decide which argument is most suited to your application.

Floating-Point Performance on MC68040-Based Workstations F-S

Must run well
on 020, 030, J.-----II~

and 040

Figure F-l. Which -cpu Argument Is Best for Your Application?

F-6 Floating-Point Performance on MC68040-Based Workstations

F.S If You Get Different Results on the 68040 and the 68020/68030

When you run a large floating-point application on a 68040-based Domain workstation,
the results may differ slightly from those on 68020-based and 68030-based platforms.
The differences are caused by the algorithms used to approximate trigonometric and tran­
scendental math functions. Having two different sets of results does not mean that one is
correct and the other incorrect, because floating-point intrinsic functions are inherently
approximations. One math function can give two different results on two different plat­
forms, yet both results can be acceptably precise approximations of the true result and are
therefore both "correct."

Two different platforms can both comply with the IEEE-754 standard for floating-point
arithmetic, yet applications executed on these two platforms may not behave identically
because the IEEE standard does not cover many common math functions. Therefore,
each new implementation may yield slightly different behavior.

Inevitably, a few applications will yield extremely different results on the 68040, or may
malfunction with various floating-point exceptions, such as overflow or divide-by-zero.
Experience shows that these cases are almost always caused by applications that use some
platform-specific feature; the application fails to run properly when executed on another
platform that does not support that feature.

For example, the extended-precision capability of the 6888x-based platforms enables inter­
mediate results in floating-point registers to exceed the maximum magnitude of double­
precision. Thus a variable declared as double-precision can, during an application's execu­
tion, assume much larger values than on a machine that does not support extended­
precision registers. Applications that use this feature will probably fail on the 68040, even
though the 68040 supports extended-precision registers. The reason is that the 68040 re­
lies on run-time libraries; therefore, values in floating-point registers are stored to memory
in single-precision or double-precision format much more often than on the 6888x.

The Series 10000 workstations and the Domain Floating-Point Accelerator. (FPA) do not
support extended-precision registers. If your application runs correctly on either of these
platforms, it will probably run correctly on the 68040.

For more information about floating-point results on different Domain platforms, see the
Domain Floating-Point Guide.

----88----

Floating-Point Performance on MC68040-Based Workstations F-7

Symbols are listed at the beginning of the index.

Symbols

. (period), and record field names, 4-158

(exclamation point), as bitwise and operator,
4-3

; (semicolon)
in compiler directives, 4-43 to 4-44
in statements, 4-188

(colon)
in case statement, 4-36
in otherwise clause of case, 4-37
in record declarations, 3-19

:= (colon and equal sign), to initialize variables
in declaration, 3-4

" (double quotes), as comment delimiter, 2-3
to 2-4, 6-11

, (single quote)
as character constant delimiter, 3-12
as string delimiter, 2-4 to 2-6

o (parentheses)
with asterisk (.), as comment delimiter,

2-3 to 2-4, 6-11
in enumerated declarations, 3-13
with mathematical expressions, 2-2
as section name delimiters, 3-52
using to organize complex expressions,

4-81

[] (square brackets)
in array declaration, 3-38
in array initialization, 3-39
in record initialization, 3-21
and set assignment, 4-173

[} (braces), as comment delimiters, 2-3 to 2-4.
6-11

Index

& (ampersand)
as bitwise and operator, 4-3
distinguished from and operator, 4-18

(pound sign), in non-decimal base numbers.
2-2

$ (dollar sign), in identifier names. 1-4

% (per cent sign), with compiler directives,
4-43

+ (plus sign)
as addition operator. 4-3
as set union operator, 4-3, 4-174

- (minus sign)
as set exclusion operator, 4-3. 4-175
as subtraction operator, 4-3

• (asterisk)
as array boundary in declaration, 3-42
in filenames, 4-130
as mUltiplication operator, 4-3
with parentheses 0, as comment delimiter,

2-3 to 2-4
in repeat counts, 3-40
as set intersection operator, 4-3, 4-175 *. (double asterisk), as exponentiation operator,
4-3

/ (slash), as division operator, 4-3
A (caret)

dereferencing a procedure or function
pointer, 4-145

with pointer type declarations. 3-50

= (equal sign)
as mathematical operator, 4-3
in record declarations, 3-19
as set equality operator, 4-3, 4-176
in type declarations, 2-13

< (less than)
as mathematical operator, 4-3
redirecting standard input, 6-39

<= (less than or equal sign)
as mathematical operator, 4-3
as set subset operator, 4-3, 4-176

Index 1

<> (less than or greater than sign)
as mathematical operator, 4-3
as set inequality operator, 4-3, 4-176

> (greater than)
as mathematical operator, 4-3
redirecting standard output, 6-39

>= (greater than or equal sign)
as mathematical operator, 4-3
as set subset operator, 4-3
as set superset operator, 4-176 ·to 4-177

- (tilde), as bitwise and operator, 4-3

_ (underscore), in identifier names, 1-4

A
AO_return routine option, 5-20

Abbreviating record names, 4-211 to 4-214

Abnormal routine option, 5-19

Abs function, 4-6, 4-12
sample program, 4-12

Absolute value, 4-12

-ae compiler option, 6-9

Access. See Scope

Access violation, 9-50, 9-52

Accessing
data that is not naturally aligned, 3-74 to

3-75
elements in variable-length strings, 3-45
files, delayed, 8-5
routines in Pascal modules, 7-8 to 7-13
variables, in other Pascal modules, 7-3 to

7-8

Accuracy, and expansion of operands, 4-5

Action part
of a program, 4-1
of a routine, 4-188

Actual parameters. See Arguments

Addition, 4-3

Addr function, 4-13 to 4...;.15
sample program, 4-14 to 4-15
using with pointers to routines, 3-50

Address, using addr function to obtain, 4-13 to
4-15
for procedure and function pointers, 4-145

Address attribute, 3-59

2, Index

Addresses
manipulating with pointers, 4-144 to 4-146
manipulating with type transfer functions,

4-144 to 4-145

Align function, 4-16 to 4-17
sample program, 4-17

Aligned, records, 3-33 to 3-35
byte, 3-23
default, 3-23
longword, 3-23
natural, 3-23, 3-33
shortword, 3-23
word, 3-23, 3-33

Aligned attribute, 3-63 to 3-76
inheritance of, 3-68
list of uses, 3-64
portability issues, 3-64
using to prevent padding, 3-69 to 3-72
using to suppress information messages,

3-74
using with %natural_alignment directive,

3-70 to 3-72
using with arrays of records, 3-66 to 3-67
using with pointers, 3-75 to 3-76

Alignment
align function, 4-16 to 4-17
array elements, 3-47
attributes. See Alignment attributes
Boolean variables, 3-11
byte aligned record fields, 3-26
of character data types, 3-13
default, for records, 3-26
definition, 3-23
integers, 3-5
messages, compiler option to display, 6-9
minimum, definition, 3-23
mode, 4-58
natural

align function, 4-16 to 4-17
compiler option, 6-25 to 6-26
definition, 3-23
%natural_alignment directive, 4-57
portability of records, 3-64
for record fields, 3-29 to 3-38
See also Natural alignment

packed records, 3-35
pointer type data, 3-52
%pop_aUgnment directive, 4-58
pre-SR10, 4-57
%push_alignment directive, 4-58
real data types, 3-7 to 3-10
records, 3-26

in arrays, 3-31 to 3-32

Alignment (continued)
of sets, 3-16 to 3-17
specifying with attributes, 3-62 to 3-76
variable-length strings, 3-44
word, %word_alignment directive, 4-57

Alignment attributes, 3-62 to 3-76
aligned

format, 3-63 to 3-64
overriding defaults with, 3-64
portability issues, 3-64
uses, list, 3-64

format, 3-63 to 3-64
inheritance of, 3-68
natural

format, 3-63 to 3-64
overriding defaults with, 3-64
portability issues, 3-64
use, 3-64

and natural alignment, 3-64 to 3-68
using to ensure same layout in all environ­

ments, 3-72 to 3-73
using to inform compiler of alignment,

3-74 to 3-75
using to pass pointers to unaligned objects,

3-76 to 3-78
using to prevent padding, 3-69 to 3-72
using to suppress information messages,

3-74
using with %natural_alignment directive,

3-70 to 3-72
using with pointers, 3-75 to 3-76

Allocating space, with new procedure, 4-117 to
4-122

Allocation. See Alignment; Internal representa­
tion

-alnchk compiler option, 6-9

Ampersand (&)
as bitwise and operator, 4-3
distinguished from and operator, 4-18

And operator, 4-3, 4-18 to 4-20
sample program, 4-20

And then operator, 4-3, 4-18 to 4-20

Anonymous data types, and parameters, 5-2

Apostrophe ('). See Single quote

Append procedure, 4-21 to 4-22
sample program, 4-21 to 4-22

Appending
null byte to string, 4-149 to 4-151
records to a file with put, 4-152 to 4-154

ar, UNIX archiver, 6-38 to 6-39

Archiving, library files, 6-38 to 6-39

Arctan function, 4-6, 4-23 to 4-24
sample program, 4-24

Arguments
alignment, align function, 4-16 to 4-17
arrays as, 4-27
difference from parameters, 5-1
passing arrays with un iv, 5-10
passing by reference, 5-3, 5-6 to 5-7
passing by value, 5-3, 5-6 to 5-7

vat'param routine option, 5-19
passing conventions, 5-3 to 5-5
passing from packed records, 3-21
pointers to routines as, 5-11 to 5-13
pointers to unaligned objects, 3-76
using in out keywords to specify direction,

5-7 to 5-9
sample program, 5-9

using univ to pass different data type, 5-10
to 5-11

using variable option to vary number of,
5-17 to 5-18
sample program, 5-18

variable and value parameters, sample pro­
gram, 5-6

See also Parameters

Arithmetic, expressions
expansion of integers, 4-5
mixing integers with reals, 4-5
using parentheses, 2-2

Arithmetic right shift, 4-29 to 4-30

Arrays, 3-37 to 3-48
as arguments, 4-27
assigning values to, 4-25 to 4-27
bit, 3-62
-bounds_violation compiler option, 6-10

to 6-11
correspondence

in C, 7-36 to 7-38
in FORTRAN, 7-16
in FORTRAN example, 7-21 to 7-24

declaring, 3-37 to 3-38
defaulting the size of, 3-42
deviation from standard Pascal, D-1
first value, 4-87
how to use, 4-25 to 4-28
indexes

compiler option, 6-21
and pack procedure, 4-139 to 4-141
and unpack procedure, 4-200 to

4-202 :

Index 3

Arrays (continued)
initializing, 3-38 to 3-43

with default size, 3-42
extern, 7-5 to 7-6
individual components, 3-39 to 3-40
mixing methods, 3-43
multiple components with a single ex­

pression, 3-39
order of, 3-41
using repeat counts, 3-40 to 3-41

integers, byte, 3-62
internal representation of, 3-45 to 3-49
last value, 4-106
operations, 4-25 to 4-28
and pack procedure, 4-139 to 4-141
packed, 3-45

internal representation, 3-47 to 3-48
passing as arguments with univ, 5-10
of records, 3-31 to 3-32, 4-160 to 4-161
sample program, 4-28
and unpack procedure, 4-200 to 4-202
variable-length, 3-44 to 3-45
and write procedure, 4-216

Arshft function, 4-6, 4-29 to 4-30
sample program, 4-30

ASCII
values in identifiers, 2-1
See also ISO Latin-1

Assembly language
preserving registers, 5-19 to 5-20
systems programming routines, E-1 to E-5

Assigning values
to arrays, 4-25 to 4-27
to arrays of records, 4-160
to pointers with nil, 4-125
to set variables, 4-173

Asterisk, double (* *), as exponentiation opera­
tor, 4-3

Asterisk (*)
as array boundary in declaration, 3-42
double (* *), as exponentiation operator,

4-3
in filenames, 4-130
as multiplication operator, 4-3
with parentheses (), as comment delimiters,

2-3 to 2-4, 6-11
in repeat counts, 3-40
as set intersection operator, 4-3, 4-175

Atomic attribute, 3-56 to 3-57

Attribute declaration part, 3-78

4 Index

Attributes
alignment. See Alignment attributes
routine. See Routine attributes
variables and types. See Attributes for vari­

ables and types

Attributes for variables and types, 3-53 to 3-78
address, 3-59
alignment, 3-62 to 3-76

inheritance of, 3-68
atomic, 3-56 to 3-57
attribute declaration part, 3-78
device, 3-57 to 3-59
format, 3-53 to 3-55
inheritance, 3-76 to 3-77
list of, 3-53
overview, 3-53 to 3-55
size, 3-60 to 3-62
summary, 3-55
syntax, 3-53 to 3-55
user-defined, 3-78
volatile, 3-56

B

-b compiler option, 6-9 to 6-10

Begin (reserved word), 4-31 to 4-32
sample program, 4-31 to 4-32

%begin_inline directive, 4-52 to 4-53, 6-32

%begin_noinline directive, 4-53 to 4-54, 6-32

_BFMT_COFF conditional variable, 4-46

Binary numbers
bit operators, 4-33 to 4-35
See also Shifting bits

Binary output, compiler option, 6-9 to 6-10

Bind command, 6-36, 6-37 to 6-39

Binding. See Linking

Bit
arrays, 3-62
attribute, 3-60 to 3-62
operations. See Shifting bits
operators, 4-33 to 4-35

sample program, 4-35
table, 4-3

Bit precision, controlling with type transfer func­
tions, 4-197 to 4-199

Blanks, in prompt-strings, 4-130

Boolean data types, 3-10 to 3-11
alignment of, 3-11
and operator, 4-18 to 4-20
and then operator, 4-18 to 4-20
arrays of, 3-46
correspondence, with FORTRAN logicals,

7-15
defining constants, 3-11
first value, 4-87
initializing, 3-10 to 3-11
internal representation of, 3-11
last value, 4-106
and logical not, 4-126 to 4-127
and logical or, 4-134 to 4-136
and logical or else, 4-134 to 4-136
and repeat/until statement, 4-161 to

4-162
and succ value, 4-191
and while statement, 4-208 to 4-210
and write procedure, 4-219 to 4-220

-bounds_violation compiler option, 6-10 to
6-11

Braces ({}), as comment delimiters, 2-3 to 2-4,
6-11

Brackets, square ([])
in array declaration, 3-38
in array initialization, 3-39
in record initialization, 3-21
and set assignment, 4-173

Branching. See Transferring control

.bss variables, 7-43 to 7-45

Byte
alignment, specifying with aligned attribute,

3-63
attribute, 3-60 to 3-62
byte aligned record fields, 3-26
integers, array, 3-62

c
C, calling from Pascal. See Calling C from Pas­

cal

C_param routine option, 5-3, 5-21

Calling assembly language routines. See Assem­
bly language

Calling C from Pascal, 7-28 to 7-46
aO_return routine option, 5-20
c-param routine option, 5-21
case sensitivity issues, 7-29 to 7-30

creating overlay sections, 7-45 to 7-46
ctop procedure, 4-61
dO_return routine option, 5-20
.data and .bss globals, 7-43 to 7-45
data sharing, 7-43 to 7-46
data type correspondence, 7-30 to 7-46
passing arrays, 7-36 to 7-38

sample program, 7-37
passing integers and real numbers, 7-30 to

7-31
sample program, 7-31

passing pointers, 7-38 to 7-40
sample program, 7-39 to 7-40

passing procedures and functions, 7-41 to
7-43
sample program, 7-41 to 7-42

passing strings, 4-61, 4-149 to 4-151,
7-32 to 7-35
sample program, 7-32 to 7-33, 7-34

to 7-35
ptoc procedure, 4-149 to 4-151
reconciling differences in argument passing,

7-29 to 7-30

Calling FORTRAN from Pascal, 7-13 to 7-28
aO_return routine option, 5-20
calling a function, 7-18 to 7-19

sample program, 7-18
calling a subroutine, 7-19 to 7-20

sample program, 7-19 to 7-20
dO_return routine option, 5-20
data type correspondence, 7-14 to 7-17
passing a mixture of data types, 7-21 to

7-24
sample program, 7-21 to 7-24

passing character arguments, 7-20 to 7-21
passing data, 7-17
passing procedures and functions, 7-24 to

7-28
sample program, 7-25 to 7-28

Caret (")
dereferencing a procedure or function

pointer, 4-145
with pointer type declarations, 3-50

Case sensitivity, 2-6
calling C from Pascal, 7-29
and identifiers, 2-1

Case statement, 4-36 to 4-38
sample program, 4-38

Changes to Domain Pascal, summary, iv to v

Changing data types, with type transfer func­
tions, 4-197 to 4-199

Index 5

Character
formatting with VFMT calls, 8-2 to 8-3
null, in variable-length strings, 3-46, 4-205

Character data types, 3-11 to 3-13
alignment of, 3-13, 3-35
assigning to arrays, 4-26
correspondence, in FORTRAN, 7-20 to

7-21
declaring variables, 3-11
defining constants, 3-12
first value, 4-87
as for loop index variables, 4-89
initializing variables, 3-12
internal representation of, 3-13
last value, 4-106
string, . 3-38

See also Strings
and succ value, 4-191
and write procedure, 4-216

Characters
end-of-line, 4-75
ISO Latin-1, table, B-1 to B-5

Chr function, 4-39 to 4-40
sample program, 4-40

Cleanup handlers, and abnormal option, 5-19

Close procedure, 4-41 to 4-42, 8-9
sample program, 4-41 to 4-42

Closing files, 8-9
definition, 4-41
flushing the buffer, 4-41
See also Close procedure

Code
encyclopedia, 4-12 to 4-58
extensions to standard, C-6 to C-11
generation types, 4-46
optimized. See Optimized code

COFF (Common Object File Format), 4-46,
6-38

Colon (:)
in case statement, 4-36
in otherwise clause of case, 4-37
in record declarations, 3-19

Colon and equal sign (:=), to initialize variables
in declaration, 3-4

-comchk compiler option, 6-11

Comments, 2-3
using -comchk compiler option, 2-4, 6-11
delimiters, and compiler directives, 2-3

6 Index

extension to standard, C-2
nesting, 2-3

Common blocks. See Data sections

Common Object File Format (COFF), 6-38

Compatibility
alignment, 4-57
binding, 6-36
files, 8-7
files opened, 3-49
UNIX files, 3-48

Compiler directives, 4-43 to 4-58
%natural_alignment, using with alignment

attributes, 3-70 to 3-72
overriding alignment, 3-64
predicates, 4-46
table of, 4-44 to 4-45

Compiler optimizations. See Optimized code

Compiler options, 6-5 to 6-36
-ac, 6-9
-alnchk, 6-9
-b and -nb, 6-9 to 6-10
-bounds violation and -no bounds viola-

tion:- 6-10 to 6-11 -
-comchk and -ncomchk, 6-11
-compress and -ncompress, 6-12
-cond and -ncond, 6-12
-config, 6-12 to 6-14

sample program, 6-13
-cpu, 6-14 to 6-17, F-2 to F-7

list of arguments, 6-16
selecting the right argument, 6-17

-db, 6-18
-dba, 6-18
-dbs, 6-18
-exp and -nexp, 6-18
-frnd and -nfrnd, 6-19 to 6-20
-idir, 6-20 to 6-21
-imap and -nimap, 6-21
-indexl and -nindexl, 6-21
-info, 6-21 to 6-22
-inlib, 6-22 to 6-23
-iso and -niso, 6-23
-I and -nl, 6-24
-map and -nmap, 6-24 to 6-25
-msgs and -nmsgs, 6-25
-natural and -nnatural, 6-25 to 6-26
-nclines, 6-26
-ndb, 6-18
-opt, 6-26 to 6-33
-pic, 6-9
-prasm and -nprasm, 6-33
-slib, 6-33 to 6-34

Compiler options (continued)
-std and -nstd, 6-35
-subchk and -nsubchk, 6-35
-version, 6-35
-warn and -nwarn, 6-35 to 6-36
-xrs and -nxrs, 6-36
alignment messages, 6-9
array bounds violation, 6-10 to 6-11
array indexing, 6-21
binary output, 6-9 to 6-10
comment checking, 6-11
compressing object file data, 6-12
conditional compilation, 6-12
conditional processing, 6-12 to 6-14

sample program, 6-13
debugger preparation, 6-18
expanded listing file, 6-18

Series 10000 format, 6-33
floating-point rounding, 6-19 to 6-20
information messages, 6-21 to 6-22
library files, 6-22 to 6-23
listing files, 6-24
memory addressing, 6-9
message summary, 6-25
natural alilgnment, 6-25 to 6-26
nonstandard Pascal, messages about, 6-35
optimized code, 6-26 to 6-33

See also Atomic attribute; Optimized
code; Volatile attribute

precompilation of include files, 6-33 to
6-34

register saving, 6-36
searching alternate directories for include

files, 6-20 to 6-21
standard Pascal, implementation, 6-23
subscript checking, 6-35
suppressing COFF line number tables, 6-26
symbol table map, 6-24 to 6-25

for include files, 6-21
target workstation selection, 6-14 to 6-17
version of compiler being used, 6-35
warning messages, 6-35 to 6-36

Compiler variants, 6-3

Compiling, 6-4 to 6-5
compiler options, table of, 6-6 to 6-8
compiler output, 6-4 to 6-8
conditional

for Series 10000, 4-46
messages, 9-4

list, 9-5 to 9-49
object file names, 6-5
See also Compiler directives; Compiler op­

tions

Complex data types, simulating FORTRAN's,
7-15

Compound statement
begin (reserved word), 4-31 to 4-32
definition, 4-188
end (reserved word), 4-71 to 4-72
sample program, 4-31 to 4-32

-compress compiler option, 6-12

Concatenation, strings
with append procedure, 4-21 to 4-22
sample program, 4-21 to 4-22

-cond compiler option, 6-12

Conditional action. See Transferring control

Conditional branching. See Case statement; If
statement

Conditional compilation, compiler option, 6-12

Conditional processing
with compiler directives, 4-43 to 4-58
compiler option, 6-12 to 6-14

sample program, 6-13
terminating with %exit directive, 4-52

-config compiler option, 6-12 to 6-14
compiler directives used with, 4-45 to 4-46
same as %enable directive, 4-50
sample program, 6-13

%config directive, 4-50 to 4-51

Const declaration part, 2-12 to 2-13

Constants
Boolean, defining, 3-11
with case statement, 4-36
character, defining, 3-12
declaring, 2-12 to 2-13

as expressions, 1-4
extensions to standard Pascal, C-3
initializing arrays to, 3-40
integers

defining, 3-5
range of, 3-5
See also Integer data types; Integers

nil, 2-12
See also Nil (reserved word)

pi, 3-6
predeclared, maxint, 3-5
real, defining, 3-7

Control, transferring. See Transferring control

Conventions
documentation, viii to ix

files, 3-48
preserving registers, 5-19 to 5-20

Index 7

Converting numbers, real to integer, 4-170

Converting types, with type transfer functions,
4-197 to 4-199

Copying, unpacked array to packed array,
4-139 to 4-141, 4-200 to 4-202

Cos function, 4-6, 4-59 to 4-60
sample program, 4-59 to 4-60

-cpu compiler option, 6-14 to 6-17
list of arguments, 6-16
and MC68040 floating-point performance,

F-2 to F-7
selecting the right argument, 6-17

Cpu help utility, 6-17

Creating files, 4-130 to 4-133, 8-6 to 8-7
compatibility with previous releases, 3-49
program example, 4-132 to 4-133
See also Open procedure

Cross-Language communication. See Calling C
from Pascal; Calling FORTRAN from Pas­
cal; External routines

Ctop procedure, 4-61
sample program, 4-149 to 4-150

D

DO_return routine option, 5-20

Data registers. See Registers

.data section, 2-10, 3-52, 3-53, 5-24 to 5-26
compressed data, 6-12
and data attributes, 3-77 to 3-78
and %slibrary directive, 4-56
variables, 7-43 to 7-45

Data sections, 3-52 to 3-53
correspondence

in C, 7-43 to 7-46
in FORTRAN, 7-17

.data as default, 3-52
and data attributes, 3-77 to 3-78
example, 7-7
extension to standard, C-2

Data type correspondence
C and Pascal, 7-30 to 7-46

table, 7-30

8 Index

FORTRAN and Pascal
arrays, 7-16
Booleans and logicals, 7-15
passing data between, 7-17
simulating FORTRAN complex type,

7-15
table, 7-14

Data types, 3-1 to 3-78
anonymous, 5-2
arrays, 3-37 to 3-48

See also Arrays
Boolean, 3-10 to 3-11

See also Boolean data types
character, 3-11 to 3-13

string, 3-38
See also Character data types; Strings

checking, 5-13
complex, simulating FORTRAN's, 7-15
correspondence

C and Pascal, 7-30 to 7-46
FORTRAN, 7-14 to 7-17, 7-21 to

7-24
sample FORTRAN program, 7-21 to

7-24
declaring, 2-13 to 2-14

sample program, 3-3
enumerated, 3-13 to 3-14

See also Enumerated data types
extensions to standard, C-4 to C-6
file, 3-48 to 3-49
function pointer, 3-50 to 3-51
integers, 3-3 to 3-6

See also Integer data types
mixing integers with reals in expressions,

4-5
overview, 3-1 to 3-3
pointers, 3-49 to 3-52

See also Pointers
procedure pointer, 3-50 to 3-51
real numbers, 3-6 to 3-9

See also Real number data types
records, 3-17 to 3-37

See also Record data types
returning size of, 4-181 to 4-183
sections, assigning variables to, 3-52 to

3-53
sets, 3-15 to 3-17

See also Set data types
string, definition, 3-38
subrange data, 3-14 to 3-15

See also Subrange data types
univytr, 3-50

Data types (continued)
unsigned, 3-9 to 3-10
using univ to pass arguments with varying,

5-10 to 5-11
variant record, 3-19 to 3-20

-db compiler option, 6-18

-dba compiler option, 6-18
optimizations generated with, 6-27

-dbs compiler option, 6-18

dbx utility, 6-40

dde command. See Domain Distributed Debug­
ging Environment

Deallocating storage, with dispose procedure,
4-64 to 4-65

%debug directive, 4-54 to 4-55

Debugger preparation, compiler options, 6-18

Debugging, 6-39 to 6-40
dbx utility, 6-40
using %debug, 4-54 to 4-55
Domain Distributed Debugging Environment

utility, 6-39
run-time errors, 9-52

Declaration part, 2-11 to 2-15
const, 2-12 to 2-13
label, 2-11
order, 1-4
type, 2-13 to 2-14
var, 2-14 to 2-15

Declarations, extensions to standard, C-2

Declaring
arrays, packed, 3-45
attributes for variables and types, 3-78
character variables, 3-11
constants, 1-4, 2-12 to 2-13
data sections, 3-53
data types, 2-13 to 2-14

sample program, 3-3
enumerated variables, 3-13
fields in records, 3-17
file variables, 3-48
files in program heading, deviation from

standard, D-l
fixed record data type, 3-17 to 3-19
labels, 2-11
parameters in routines, 5-2
pointers, 3-49
real variables, 3-6

records
fixed, 3-17 to 3-19
maximizing efficiency, 3-29 to 3-38
packed, 3-21, 3-36
syntax note, 3-19
variant, 3-19 to 3-20

routine options, 5-21 to 5-24
set variables, 3-15
text files, 3-48
variable-length string, 3-44
variables, 2-14 to 2-15

in include files, 7-7
See also Initializing

Decrementing, for loop index variable, 4-89

Default
alignment

definition, 3-23
example, 3-69
overriding with natural attribute, 3-64
for record data types, 3-26
simple data types. See individual data

types
.data section, 2-10, 3-52
file type, 8-6
1/0 streams, 8-3 to 8-4

table, 8-4
library pathnames, 4-56
optimizations

suppressing with atomic attribute, 3-56
suppressing with volatile attribute,

3-56
routine options, defining and using, 5-22 to

5-24
size of text files, 4-131
storage of variables in .data, 3-52
. text section, 2-10

Default_routine_options, 5-22 to 5-24

Define
clause

using with C programs, 7-43 to 7-45
definition, 7-3

statement
definition, 7-11
example, 7-10
syntax, 7-5

Delayed access, 8-5

Deleting, file contents with rewrite, 4-168 to
4-169

Dereferencing pointers, 4-144 to 4-146

Development. See Program development

Deviations from standard Pascal, D-l to D-5

Index 9

Device attribute, 3-57 to 3-59
inheritance, 3-76 to 3-77

Diagnostic messages, 9-1 to 9-54
See also Errors

Disable procedure, E-3

Discard procedure, 4-62 to 4-63
sample program, 4-62 to 4-63

Discarding, return value of an expression, 4-62
to 4-63

Display, writing to, sample program, 4-220

Dispose procedure, 4-64 to 4-65
sample program, 4-119 to 4 ... 122

Div operator, 4-3, 4-66 to 4-67
sample program, 4-67

Division, 4-3

Do. See For statement; While statement

Documentation
conventions, viii to ix
related, v to vi

Dollar sign ($), in identifier names, 1-4

Domain/C. See Calling C from Pascal

Domain/Dialogue, 6-42 to 6-43

Domain Distributed Debugging Environment,
6-39
and run-time errors, 9-52

Domain FORTRAN. See Calling FORTRAN
from Pascal

Domain/PAK (Domain Performance Analysis
Kit), 6-43

Domain Software Engineering Environment
(DSEE), 6-41 to 6-42

Double, data type, 3-6
See also Real number data types

Double asterisk (* *), as exponentiation opera­
tor, 4-3

Double quotes ("), as comment delimiter, 2-3
to 2-4

Downto. See For statement

DPAT (Domain Performance Analysis Tool),
6-43

DSEE . (Domain Software Engineering Environ­
ment),6-41 to 6-42

DSPST (Display Process Status), 6-43

10 Index

E
e constant, and exp function, 4-79

Efficiency
alignment issues, 3-64, 4-16
declaring record fields, 3-29 to 3-38
Domain/PAK (Domain Performance Analy-

sis Kit), 6-43
with in range function, 4-104
and iniernal routine option, 5-17
and natural alignment, 3-74 to 3-75
using packed arrays, 3-45
using sections, 3-52 to 3-53
on Series 10000, 3-75, 4-16, 4-57

%eject directive, 4-55

Eliminating, warnings with discard statement,
4-62 to 4-63

Else. See If statement

%else directive, 4-47

%elseif predicate %then directive, 4-47 to 4-48

%elseifdef predicate %then directive, 4-49

Empty statement, definition, 4-188

%enable directive, 4-50
same as -config option, 4-50

Enable procedure, E-4

Encyclopedia of Domain Pascal code, 4-12 to
4-58

End
of file, 4-73 to 4-74
of line, 4-75

End (reserved word), 4-71 to 4-72
sample program, 4-31 to 4-32

End-of-line character, 4-75

%end_inline directive, 4-52 to 4-53, 6-32

%end_noinline directive, 4-53 to 4-54, 6-32

%endif directive, 4-48

Enumerated data types, 3-13 to 3-14
declaring, 3-13
first value, 4-87
and in_range, 4-104 to 4-105
internal representation of, 3-13 to 3-14
last value, 4-106
and succ value, 4-191
and write procedure, 4-219 to 4-220

Eof function, 4-73 to 4-74
sample program, 4-74

Eoln function, 4-75 to 4-76
sample program, 4-75 to 4-76

Equal sign (=)
as mathematical operator, 4-3
in record declarations, 3-19
as set equality operator, 4-3, 4-176
in type declarations, 2-13

Equality, of sets, 4-176

Erasing, file contents with rewrite, 4-168 to
4-169

%error 'string' directive, 4-51

Errors, 9-1 to 9-54
compiler messages, 9-4 to 9-50
definition, 9-4
error status parameter, 9-1
list of messages, 9-5 to 9-49
message conventions, 9-5
misuses of in out parameters, 5-9
reported by open and find, 9-1 to 9-4

printing, 9-2 to 9-4
testing for, 9-3 to 9-4

returned by find, table, 9-3
returned by open, table, 9-3
run-time, 9-50 to 9-54

floating-point, 9-54
operating system, 9-52 to 9-53

Example. See Sample programs

Exclamation point (I), as bitwise or operator,
4-3

Exclusion, operation with sets, 4-175

Executing programs, 6-39

%exit directive, 4-52

Exit statement, 4-77 to 4-78
sample program, 4-77 to 4-78

-exp compiler option, 6-18

Exp function, 4-6, 4-79 to 4-80
sample program, 4-79 to 4-80

Expanded listing file
compiler option, 6-18
Series 10000 format, compiler option, 6-33

Expansion of operands, 4-5

Exponentiation, 4-3
operator, 4-3

Expressions
constant, declaring, 2-12 to 2-13

See also Constants
definition, 4-81 to 4-82
mixing integers with reals in expressions,

4-5

mixing signed and unsigned operands, 4-6
order of precedence, 4-4
using parentheses in arithmetic, 2-2
in write and writeln procedures, 4-215

Extensions, list of, C-1 to C-14

Extern
clause

using with C programs, 7-43 to 7-45
definition, 7-3
initializing arrays, 7-5 to 7-6

routine option, 5-17
accessing routines in Pascal modules,

7-8
example, 7-9, 7-12
See also External routines

External routines, 7-1 to 7-46
accessing routines in other Pascal modules,

7-8 to 7-13
extern, 7-8
internal, 7-8

using data sections to access variables, ex­
ample, 7-7

data type correspondence
C and Pascal, 7-30 to 7-46
FORTRAN and Pascal, 7-14 to 7-17
with size attributes, 3-62

modules, 7-1 to 7-3
accessing variables in other Pascal

modules, 7-3 to 7-8
example, 7-7
heading, 7-2 to 7-4

using registers, 5-20
See also Calling C from Pascal; Calling

FORTRAN from Pascal

Extracting substrings, 4-189 to 4-190

F
Fatal errors, definition, 9-4
Fields

for write and writeln procedures, 4-215 to
4-220

See also Declaring; Record data types

File data types, and 1/0 stream IDs, 8-3

Files, 3-48 to 3-49
closing, 4-41 to 4-42, 8-9

See also Close procedure
COFF (Common Object File Format),

4-46, 6-38
compatibility, with previous releases, 3-49
creating, 4-130 to 4-133, 8-6 to 8-7

program example, 4-132 to 4-133
See also Open procedure

Index 11

Files (continued)
delayed access, 8-5
deleting contents with rewrite, 4-168 to

4-169
documentation convention, 3-48
and find procedure, 4-83 to 4-86
library

binding, 6-3
compiler option, 6-22 to 6-23

listing in program heading, 2-10
deviation from standard, 0-1

map, 6-24 to 6-25
for include files, 6-21

object file names, 6-5
opening, 4-130 to 4-133

existing, 8-7
See also Open procedure
new, 8-6 to 8-7
program example, 4-132 to 4-133

organization, 8-6
reading, 8-7 to 8-8

See also Get procedure; Read proce~
dure; Reset procedure

rec, 3-49, 8-7
replace procedure, 4-163
separately compiled, 7-3 to 7-8
temporary, 4-41, 4-131
text, definition, 3-48
UNIX compatible, 3-48, 8-6
unstruct, 3-49, 8-6
write and writeln procedures, 4-215 to

4-220
writing, 8-8 to 8-9
See also Stream marker

Find procedure, 4-83 to 4-86
errors reported by, 9-1 to 9-4
errors returned by, table, 9-3
sample program, 4-84 to 4-86

Finding. See Returning; Testing

Firstof function, 4-87 to 4-88
and pred's value, 4-147
sample program, 4-88

Floating-point
numbers. See Real number data types
performance on MC68040, optimizing, F-1

to F-7
registers. See Registers
rounding, compiler option, 6-19 to 6-20
run-time errors, 9-54

For statement, 4~89 to 4-91
sample program, 4-90 to 4-91

12 Index

Formal parameters. See Parameters

Format
converting with VFMT calls, 8-2 to 8-3
of real numbers, 3-7 to 3-10
program

illustration, 2-8
sample program, 2-9

routine headings, 2-16
See also Internal representation; Syntax

Formfeed
inserting in a file, 4-142
inserting with %eject directive, 4-55

FORTRAN, calling from Pascal. See Calling
FORTRAN from Pascal

Forward routine option, 5-16 to 5-17
sample program, 5-16

-frnd compiler option, 6-19 to 6-20

Function, pointer data type, 3-50 to 3-51,5-11
to 5-13

Functions
attribute list, 5-24 to 5-26
calling, 5-3
nested, and section attribute, 5-26
parameter list, 5 -1 to 5 - 3
parameter types, 5-5 to 5-13
passing from Pascal to C, 7-41 to 7-43
passing from Pascal to FORTRAN, 7-24 to

7-28
passing pointers, to unaligned objects, 3-76
predeclared, mathematical, 4-5 to 4-8
returning pointer variables to registers, 5-20
routine options, 5-15 to 5-21

See also Routine options
using as parameters, 5-13 to 5-15
using section attribute to gain efficiency,

5-24 to 5-26
See also Routines

G
Get procedure, 4-92 to 4-94, 8-7 to 8-8

sample program, 4-93 to 4-94
similarities to read, 4-93

getpas utility, 1-2 to 1-4

Goto statement, 4-95 to 4-98
compared with exit, 4-77
compared with next, 4-123
and nested routines, 4-97
sample program, 4-97 to 4-98

GPIO drivers, using -pic to compile, 6-9

Greater than (»
as mathematical operator, 4-3
redirecting standard output, 6-39

Greater than or equal sign (>=)
as mathematical operator, 4-3
as set superset operator, 4-3, 4-176 to

4-177

Guard fault, 9-50, 9-52 to 9-53

H

Hardware fault, on Series 10000, 3-74 to 3-76

Headings
module, 7-2 to 7-4
program, deviation from standard, 0-1
routine, 2-16

HPC (Histogram Program Counter), 6-43

I

Identifiers
definition, 2-1
deviation from standard Pascal, 0-1
dollar sign ($) in names, 1-4
extension to standard, C-1
length of, 2-1
predeclared, list, A-2
underscore U in names, 1-4

-idir compiler option, 6-20 to 6-21

%if predicate %then directive, 4-47

If statement, 4-99 to 4-101
different from case statement, 4-37
sample program, 4-100 to 4-101

%ifdef predicate %then directive, 4-49

Illegal address, 9-50, 9-53

-imap compiler option, 6-21

In operator, 4-102 to 4-103
sample program, 4-102 to 4-103
as set subset operator, 4-3

In Out parameters, 5-7 to 5-9
misuses of, 5-9
sample program, 5-9

In parameters, 5-7 to 5-9
misuses of, 5-9
sample program, 5-9

In_range function, 4-104 to 4-105
sample program, 4-105

%include directive, 4-55
compared to %slibrary directive, 4-56
See also Include files

Include files
and %exit directive, 4-52
and %ifdef directive, 4-49
maps of symbol tables for, compiler option,

6-21
nested, 4-55
precompilation of, compiler option, 6-33
searching alternate directories, compiler op-

tion, 6-20 to 6-21
variable declarations in, 7-7

Incrementing, for loop index variable. 4-89

Index variables
in arrays, 4-25
in for loops, 4-89

-index) compiler option, 6-21

-info compiler option, 6-21 to 6-22

Information messages
compiler option, 6-21 to 6-22
definition, 9-4
list. 9-5 to 9-49

Inheritance, of attributes for variables and types.
3-76 to 3-77

Initializing
arrays, 3-38 to 3-43

with default size. 3-42
extern, 7-5 to 7-6
individual components of, 3-39 to

3-40
mixing methods. 3-43
multiple components of, 3-39
order. 3-41
using repeat counts. 3-40 to 3-41

Boolean data types, 3-10 to 3-11
character variables, 3-12
integer data types. 3-4 to 3-5
pointers, 3-51
real number data types. 3-6 to 3-7
records, 3-21 to 3-22
sets. 3-15 to 3-16

-inlib compiler option, 6-22 to 6-23

Inline expansion, 6-32
%begin_inline and %end_inline directives.

4-52 to 4-53
%begin_noinline and %end_noinline direc­

tives, 4-53 to 4-54

Index 13

Input. See 1/0

Input procedures. See Get procedure; Read,
readln procedure; Reset procedure; Stream
marker

Input/Output. See 1/0

Insert files. See Include files

Integer data types, 3-3 to 3-6
alignment of, 3-5 to 3-6
arithmetic right shift, 4-29 to 4-30
bit operators, 4-3, 4-33 to 4-35
byte integers, 3-62
declaring, 3-4
defining integer constants, 3-5
expansion of operands, 4-5
first value, 4-87
initializing, 3-4 to 3-5
internal representation of, 3-5 to 3-6
last value, 4-106
left shift, 4-109 to 4-110
mixing with reals in expressions, 4-5
right shift, 4-171 to 4-172
and succ value, 4-191
unsigned, 3-9 to 3-10
and write procedure, 4-217 to 4-218

Integer16. See Integer data types

Integer32. See Integer data types

Integers
definition, 2-2
expressing in other bases, 2-2
extension to standard, C-1
range of, 3-5

in sets, 3-15
rounding to nearest, 4-170
truncating to, 4-195 to 4-196
See also Integer data types

Interactive 1/0, 8-4 to 8-5

Internal representation
arrays, 3-45 to 3-49
Boolean variables, 3-11
character variables, 3-13
integers, 3-5 to 3-6
packed arrays, 3-47 to 3-48
pointers, 3-51 to 3-55
real numbers, 3-7 to 3-10
records

packed, 3-35 to 3-38
unpacked, 3-22 to 3-32

set data types, 3-16 to 3-17

14 Index

subranges, 3-14 to 3-15
variable-length strings, 3-44
variables in sections, 3-52

Internal routine option, 5-17
accessing routines in other Pascal modules,

7-8
example, 7-9

Intersection, operation with sets, 4-175

1/0, 8-1 to 8-9
default streams, 8-3 to 8-4

table, 8-4
Domain/OS, background, 8-1 to 8-6
file organization, 8-6
file variables, 8-3 to 8-6
interactive, 8-4 to 8-6
predeclared procedures, 8-6 to 8-9

overview, 4-8
procedures, extensions to standard Pascal,

C-8
stream· calls (lOS), 8-1 to 8-6
stream markers, 8-5 to 8-6
VFMT (variable format) calls, 8-2 to 8-3

lOS (Input Output Stream) calls, 8-1 to 8-2

-iso compiler option, 6-23
ISO Latin-I, 2-4 to 2-6

characters, table, B-1 to B-5
embedding unprintable characters, 2-4 to

2-6
using chr function to obtain character,

4-39 to 4-40

ISO standard Pascal
deviations from, list, 0-1 to 0-5
extensions to, list of, C-1 to C-14

_ISP_A88K conditional variable, 4-46

_ISP _M68K conditional variable, 4-46

J
Jumping. See Transferring control

K
Keyboard

reading from, sample program, 4-220
using device attribute with, 3-57 to 3-59

Keywords, list of, 4-11, A-I to A-2

L
-I compiler option, 6-24

Label declaration part, 2-11

Labels, 1-4
declaring, 2-11
extension to standard, C-3
and goto statement, 4-95

Lastof function, 4-106
sample program, 4-88

Layout, of records, 3-26 to 3-27
maintaining, 3-64
See also Alignment; Internal representation

Id utility, 6-36 to 6-37

Left shift, 4-109 to 4-110

Length
finding with sizeof function, 4-181
of identifiers, 2-1
line, 8-6
variable, strings, 3-44 to 3-45

Less than «)
as mathematical operator, 4-3
redirecting standard input, 6-39

Less than or equal sign «=)
as mathematical operator, 4-3
as set subset operator, 4-3, 4-176

Less than or greater than sign (<»
as mathematical operator, 4-3
as set inequality operator, 4-3, 4-176

Library files
binding, 6-3, 6-37
compatibility, 6-38
compiler option to load, 6-22 to 6-23
creating with archiver, 6-38 to 6-39
including in your program, 4-56
precompiled, 4-56, 6-33
and %slibrary directive, 4-56

Limits
array dimensions, 3-37
characters in lines of text files, 2-7
elements in sets, 3-16
identifier length, 2-1
length of varying array of char, 3-44
line length, 8-6
lines in file, 8-6
lowest negative integer, 4-12
parameters in a list, 5-1
pathnames with -idir, 6-21
set storage size, 3-16
size of text files, 4-131
smallest record size, 3-26
subranges in sets, 3-15

Lines
end of, 4-75 to 4-76

and readln, 4-155 to 4-157
and writeln, 4-216 to 4-220

length, 8-6
maximum in file, 8-6

Linked list
and dispose procedure, 4-65
last record, 4-125
sample program, 4-119 to 4-122, 7-39 to

7-40

Linking, 6-36 to 6-38
bind command, 6-37 to 6-39
Id utility, 6-36 to 6-37
modules, example, 7-13
with other Pascal modules, example, 7-4

%list directive, 4-55 to 4-56

Listing files
compiler option, 6-24
and %eject directive, 4-55
and %list directive, 4-55

Ln function, 4-6, 4-107 to 4-108
sample program, 4-107 to 4-108

Logarithms, 4-79 to 4-80, 4-107 to 4-108

Logical operators
and, 4-18 to 4-20

sample program, 4-20
and then, 4-18 to 4-20
distinct from bit operators, 4-34
not, 4-126 to 4-127
or, 4-134 to 4-136
or else, 4-134 to 4-136
table, 4-3

Long, attribute, 3-60 to 3-62

Longword
alignment

specifying with aligned attribute, 3-63
See also Alignment

boundary, definition, 3-23

Loops. See Exit statement; For statement; Next
statement; Repeat statement; While state­
ment

Low-level calls. See Systems programming rou­
tines

Lowercase and uppercase. See Case sensitivity

Lshft function, 4-6, 4-109 to 4-110
sample program, 4-109 to 4;.4 10

Index 15

M

-map compiler option, 6-24 to 6-25

Map files
compiler option, 6-24 to 6-25
for include files, compiler option, 6-21

Markers, stream. See Stream marker

Mathematical
functions, predeclared, 4-5 to 4-8
operations

mixing integers with reals, 4-5
mixing signed and unsigned, 4-5

operators, 4-2 to 4-8
div, 4-66
mod, 4-115
precedence, 4-4
table of, 4-3

Max function, 4-111 to 4-112
sample program, 4-111 to 4-112

Maximum. See Limits

Maxint, defined, 3-5

MC68020/MC68030 microprocessor, generating
code for, 6-15, 6-16, 6-17

MC68040 microprocessor
generating code for, 6-16, 6-17
optimizing floating-point performance, F-1

to F-7

Membership in a set, determining with in opera­
tor, 4-102 to 4-103

Memory, and run-time errors, 9-50 to 9-51

Messages
compiler, list of, 9-5 to 9-49
preventing, with aligned attribute, 3-64
printing with %error directive, 4-51
printing with %warning directive, 4-51 to

4-52
run-time errors, 9-50 to 9-54
summary of, compiler option, 6-25
suppressing with alignment attributes, 3-74

Min function, 4-113 to 4-114
sample program, 4-114

Minimum
size for data types, 3-61
See also Limits

Minus sign (-)
as set exclusion operator, 4-3, 4-175
as subtraction operator, 4-3

16 Index

Mod operator, 4-3, 4-115 to 4-116
sample program, 4-116

Modules, 7-1 to 7-3
accessing variables in other Pascal modules,

7-3 to 7-8
extension to standard, C-14
heading, 7-2 to 7-4
using include files, 7-7
order of declarations, 7-7

-msgs compiler option, 6-25

Multiplication, 4-3
Boolean, 4-18 to 4-20

Multiprocessing
atomic attribute, 3-56 to 3-57
suppressing optimizer with volatile, 3-56

N
Name compatibility, 5-13

Names
data sections, 3-52 to 3-53

example, 7-7
dollar sign ($) in identifier, 1-4
library pathnames, 4-56
object files created by compiler, 6-5
procedures and functions, 2-16
program, 2-10
of records, abbreviating, 4-211 to 4-214
underscore U in identifier, 1-4

Natural alignment
compiler option, 6-25 to 6-26
definition, 3-23, 3-64 to 3-68
dereferencing pointers, 3-75 to 3-76
and efficiency, 3-74 to 3-75
memory allocation, for records, 3-27 to

3-29
%natural_alignment directive, 4-57
portability of records, 3-64
pre-SR10, 4-57
records, 3-29 to 3-38

align function, 4-16 to 4-17
in arrays, 3-31 to 3-32
example, 3-65

specifying with attributes, 3-62 to 3-76
with aligned attribute, 3-64, 3-67
with natural attribute. 3-64 to 3-65.

3-66 to 3-67

Natural attribute
inheritance of, 3-68
portability issues, 3-64
using to suppress information messages,

3-74

Natural attribute (continued)
using with %natural_alignment directive,

3-70 to 3-72
using with arrays of records, 3-66 to 3-67

-natural compiler option, 6-25 to 6-26

Natural logarithms, 4-79 to 4-80, 4-107 to
4-108

%natural_alignment directive, 4-57
using with alignment attributes, 3-70 to

3-72

-nb compiler option, 6-9 to 6-10

-nclines compiler option, 6-26

-ncomchk compiler option, 6-11

-ncompress compiler option, 6-12

-ncond compiler option, 6-12

-ndb compiler option, 6-18

Negation operator, 4-3

Nested
comments, 2-3
for loops, example, 4-90 to 4-91
include files, 4-55
loops, and exit statement, 4-77
routines, 2-19 to 2-21

sample program, 2-20
and section attribute, 5-26

Nested routines, with goto statement, 4-97

Network File System (NFS), 6-43 to 6-44

New procedure, 4-117 to 4-122
sample program, 4-119 to 4-122

-nexp compiler option. 6-18

Next statement, 4-123 to 4-124
and for loops, 4-90
and repeat loops, 4-161
sample program, 4-124
and while loops, 4-208

-nfrnd compiler option. 6-19 to 6-20

~FS (Network File System), 6-43 to 6-44

Nil (predeclared constant), 4-125

Nil (reserved word), 4-125
pointer expression, 2-12

'lil pointer, and calling dispose procedure. 4-65

-nimap compiler option, 6-21

-nindexl compiler option, 6-21

-niso compiler option, 6-23

-nl compiler option, 6-24

-nmap compiler option, 6-24 to 6-25

-nmsgs compiler option, 6-25

-nnatural compiler option, 6-25 to 6-26

-no_bounds_violation compiler option, 6-10 to
6-11

%nolist directive, 4-55 to 4-56

Noreturn routine option, 5-20

Nosave routine option, 5-19 to 5-20

Not operator, 4-3, 4-126 to 4-127
sample program, 4-127

-nprasm compiler option, 6-33

-nstd compiler option, 6-35

-nsubchk compiler option, 6-35

Null character
with ctop procedure, 4-61
in variable-length strings, 3-46, 4-205

Numbers
bases permitted, 1-4
floating-point. See Real number data types
formatting with VFMT calls. 8-2 to 8-3
integers

range of, 3-5
See also Integer data types; Integers

non-decimal. 2-2
range of. in sets, 3-15
real. See Real number data types
single-precision. See Real number data

types

-nwarn compiler option, 6-35 to 6-36

-nxrs compiler option, 6-36

o
Object file names, created by compiler. 6-5

Octaword, alignment. specifying with aligned
attribute, 3-63

Odd function, 4-6, 4-128
sample program, 4-128

Odd numbers. testing for, 4-128

Of. See Case statement

Online sample programs. 1-2 to 1-4
See also Sample programs

Open Dialogue. 6-42 to 6-43

Index 17

Open procedure, 4-130 to 4-133, 8-6 to 8-9
errors reported by, 9-1 to 9-4
errors returned by, table, 9-3
sample program, 4-132 to 4-133

Opening
existing files, 8-7
new files,· 8-6 to 8-7
See also Open procedure

Operators
bit, 4-3
mathematical

div, 4-66
mod, 4-115
table of, 4-3

order of precedence, 4-4

-opt compiler option, 6-26 to 6-33

Optimization techniques. See Optimized code

Optimized code
compiler option, 6-26 to 6-33
discarding unused return values, 4-62 to

4-63
and exit statement, 4-77
and goto statement, 4-77
with noreturn option, 5-20
suppressing optimizations using atomic at­

tribute, 3-56 to 3-57
suppressing optimizations using device at­

tribute, 3-57 to 3-59
suppressing optimizer with volatile, 3-56

Options. See Compiler options; Routine options

Or else operator, 4-3

Or operator, 4-3, 4-134 to 4-136
sample program, 4-136

Ord function, 4-137 to 4-138
sample program, 4-138

Order
declaration parts, 1-4
of declarations, extension to standard, C-2
declarations in modules, 7-7
define statement, 7-5, 7-6
precedence of operators, 4-4

Ordinal values
finding. next with succ function, 4-191 to

4-192
finding preceding with pred function,

4-147 to 4-148
returning with ord function, 4~137 to

4-138

18 Index

Otherwise, extension to case statement, 4-36 to
4-38

Out parameters, 5-7 to 5-9
misuses of, 5-9
sample program, 5-9

Out-of-bounds address, 9-53

Output. See I/O

Output procedures. See Find procedure; Page
procedure; Replace procedure; Stream
marker

Overlay section, definition, 3-52
See also Data sections

p

Pack procedure, 4-139 to 4-141
sample program, 4-140 to 4-141

Packed
arrays, 3-45

internal representation, 3-47 to 3-48
using unpack procedure, 4-200 to

4-202
records

definition, 3-21
internal representation, 3-35 to 3-38
manipulating fields, 3-21

sets, 3-15
deviation from standard Pascal, D-1

Padding
in arrays of Boolean, 3-46
inserting in records, with attributes and di­

rectives, 3-32, 3-67
with %natural alignment directive, 3-70

to 3-72 -
in records, 3-26 to 3-27

eliminating, 3-31, 3-64, 3-69 to 3-72
strings, 4-27
in variable-length strings, 3-46, 4-204

Page advance, inserting in a file, 4-142

Page procedure, 4-142 to 4-143, 8-8 to 8-9
sample program, 4-143

Parameters
difference from arguments, 5-1
error status, 9-1
list, 5-1 to 5-3
list of types, 5-5
misuses of in out, 5-9
passing by value, val_param routine op­

tion, 5-19
procedures and functions as parameters,

5-13 to 5-15

Parameters (continued)
routine pointers as, 5-11 to 5-13
type checking, 5-11
universal specification with univ, 5-10 to

5-11
using in out keywords to specify direction,

5-7 to 5-9
sample program, 5-9

using variable option to vary number of,
5-17 to 5-18
sample program, 5-18

var and out, 5-8
variable and value, 5-6 to 5-7

sample program, 5-6

Parentheses ()
with asterisk (*), as comment delimiter,

2-3 to 2-4, 6-11
in enumerated declarations, 3-13
with mathematical expressions, 2-2
as section name delimiters, 3-52
using to organize complex expressions,

4-81

pas command, 6-4 to 6-5

Passing, pointers to unaligned objects, 3-76

Pathname, of file to open, 4-130

PEB (Performance Enhancement Board), refer­
encing with address attribute, 3-59

Per cent sign (%), with compiler directives,
4-43

Performance. See Efficiency

Period (.), and record field names, 4-158

-pic compiler option, 6-9

Plus sign (+)
as addition operator, 4-3
as set union operator, 4-3, 4-174

Pointers, 3-49 to 3-52
alignment attributes and, 3-75 to 3-76
correspondence, in C, 7-38 to 7-40
data type checking, 5-13
declaring, 3-49
and dispose procedure, 4-64 to 4-65
function, 3-50 to 3-51

dereferencing, 4-145
initializing, 3-51
internal representation of, 3-51 to 3-55
linked list example, 4-119 to 4-122
list of pointer data types, 3-2
and new procedure, 4-117 to 4-122
nil, 4-125

predeclared with univJtr, 3-50
procedure, 3-50 to 3-51

dereferencing, 4-145
univJJtr, 3-50
using, 4-144 to 4-146

%pop_alignment directive, 4-58

Portability, and natural alignment, 3-64

Pound sign (#), in non-decimal base numbers,
2-2

-prasm compiler option, 6-33

Precedence, of operators, 4-4

Precompilation of include files, compiler option,
6-33 to 6-34

Precompiled library files, 4-56

Pred function, 4-147 to 4-148
sample program, 4-148

Predeclared identifiers, list, A-2

Predicates
%config directive, 4-50
declaring with %var, 4-50
definition, 4-46
example, 4-46
predeclared, 4-46
setting with %enable, 4-50

Printing
inserting page advance in a file, 4-142
messages with %error directive, 4-51
messages with %warning directive, 4-51 to

4-52
with write and writern procedures, 4-215

to 4-220

Procedure, pointer data type, 3-50 to 3-51,
5-11 to 5-13

Procedures
attribute list, 5-24 to 5-26
calling, 5-3
110, predeclared, 8-6

list of, 4-8
nested, and section attribute, 5-26
parameter list, 5-1 to 5-3
parameter types, 5-5 to 5~13
passing from Pascal to C, 7-41 to 7-43
passing from Pascal to FORTRAN, 7-24 to

7-28
passing pointers, to unaligned objects, 3-76
predeclared

110, 8-6
list of, 4-8

systems programming, 4-10, E-1 to
E-5

Index 19

Procedures (continued)
routine options, 5-15 to 5-21

See also Routine options
using as parameters, 5-13 to 5-15
using section attribute to gain efficiency,

5-24 to 5-26
See also Routines

Program
declarations, 2-11 to 2-15
heading, 2-10 to 2-11
organization, overview, 2-7 to 2-17

Program development
archiving, 6-38 to 6-39
compiler options, 6-5 to 6-36
compiling, 6-4 to 6-5
debugging, 6-39 to 6-40
executing, 6-39
linking, 6-36 to 6-38
steps, 6-1 to 6-3
systems programming, 4-10, E-1 to E-5
tools, 6-40 to 6-43
using the Network File System (NFS) , 6-43

to 6-44

Ptoc procedure, 4-149 to 4-151
sample program, 4-149 to 4-150

%push_aJignment directive, 4-58

Put procedure, 4-152 to 4-154, 8-8 to 8-9
sample program, 4-153 to 4-154

Q

Quad, attribute, 3-60 to 3-62

Quadword, alignment, specifying with aligned
attribute, 3-63

Quotation marks. See Double quote; Single
quote

R

Range
of array dimensions, 3-37
of integers, 3-5
of integers in sets, 3-15
of real numbers, 3-6
of unsigned, 3-9 to 3-10
See also Limits

20 Index

Read, readln procedure, 4-155 to 4-157, 8-7
to 8-8
sample program, 4-156 to 4-157
similarities to get, 4-93

Reading files. See Find procedure; Get proce­
dure; Read procedure; Reset procedure

Real number data types, 3-6 to 3-9
alignment of, 3-7 to 3-10
declaring real variables, 3-6
defining constants, 3-7
initializing, 3-6 to 3-7
internal representation of, 3-7 to 3-10
mixing with integers in expressions, 4-5
and write procedure, 4-218 to 4-219

Real numbers, 2-2
definition, 2-2
See also Real number data types

Rec files, 8-7

Record data types, 3-17 to 3-37
alignment, 3-26

in arrays, 3-31
default, 3-26
minimum, 3-23 to 3-25
natural, 3-23
pre-SRI0, 4-57

allocation of space, 3-26
argument passing, from packed records,

3-21
assigning values to, 4-158
declaring

fixed, 3-17 to 3-19
variant, 3-19 to 3-20

fixed, 3-17 to 3-19
format for field, 3-17
initializing data, 3-21 to 3-22
internal representation of, 3-22 to 3-32
layout, 3-26 to 3-27
memory allocation, 3-27 to 3-29
packed, internal representation of, 3-35 to

3-38
passing fields as parameters, 4-16 to 4-17
portability, 3-64
size of, 3-26
with sizeof function, 4-182
unpacked and packed, definition, 3-21
using, 4-158 to 4-160
variant, 3-19 to 3-20, 4-159 to 4-160
with statement, 4-211 to 4-214

Recursion, 5-26
sample program, 5-26

Referencing
objects with address attribute, 3-59
pointers to unaligned objects, 3-75 to 3-76
variable-length strings, 3-44

Registers
aO_return routine option, 5-20
dO_return routine option, 5-20, 7-29
hardware status, E-3, E-4, E-5
using nosave routine option, 5-19 to 5-20
and optimization techniques, 6-26 to 6-33
saving, compiler option, 6-36 .
systems programming routines, 4-10, E-1

to E-5
using address attribute to reference, 3-59
using device attribute to map, 3-57 to

3-59

Related manuals, v to vi

Repeat count, using to initialize arrays, 3-40 to
3-41

Repeat statement, 4-161 to 4-162
contrasted to while, 4-210
sample program, 4-161 to 4-162

Replace procedure, 4-163, 8-8 to 8-9
sample program, 4-84 to 4-86

Reserved words, list of, A-1

Reset procedure, 4-164 to 4-165, 8-7 to 8-8
sample program, 4-165

Return statement, 4-166 to 4-167
sample program, 4-166 to 4-167

Returning
character with specified ASCII code, 4-39

to 4-40
first value of variable or type, 4-87
larger of two expressions, 4-111 to 4-112
last value of variable or type, 4-106
ordinal value, 4-137 to 4-138
predecessor of ordinal, 4-147 to 4-148
prematurely with return statement, 4-166

to 4-167
size of data objects, 4-181 to 4-183
smaller of two expressions, 4-113 to 4-114
successor of ordinal, 4-191 to 4-192

Revisions, to manual, iv to v

Rewrite procedure, 4-168 to 4-169, 8-6
sample program, 4-169

Right shift, 4-171 to 4-172
arithmetic, 4-29 to 4-30

Round function, 4-6, 4-170
sample program, 4-170

Rounding numbers, and write, writeln proce­
dures, 4-219

Routine attributes
attribute list, 5-24 to 5-26
section, 5-24 to 5-26

Routine options, 5-15 to 5-21
aO_return, 5-20
abnormal, 5-19
c-param, 5-21
dO_return, 5-20
extern, 5-17

accessing routines in Pascal modules,
7-8

example, 7-9. 7-12
forward. 5-16 to 5-17

sample program, 5-16
internal, 5-17, 7-8

example, 7-9
list. 5-15
noreturn, 5-20
nosave, 5-19 to 5-20
syntax, 5-15
user defined, 5-21 to 5-24
val_param, 5-19
variable, 5-17 to 5-18

sample program, 5-18

Routine_option declaration part, 5-21 to 5-24

Routines. 5-1 to 5-26
accessing routines in other Pascal modules,

7-8 to 7-13
attribute list, 5-24 to 5-26
calling, 5 - 3
declaration part. 2-16
extensions to standard, C-11 to C-13
external. See External routines
function pointers, 3-50 to 3-51

dereferencing. 4-145
heading. 2-16
in out parameters, 5-7 to 5-9

sample program, 5-9
in parameters, 5-7 to 5-9

sample program. 5-9
modules, 7-1 to 7-3
nested, 2-19 to 2-21

and goto statement, 4-97
sample program, 2-20
and section attribute, 5-26

options. See Routine options
out parameters, 5-7 to 5-9

sample program, 5-9

Index 21

Routines (continued)
overview, 2-15 to 2-17
parameter list, 5-1 to 5-3
parameter types, 5-5 to 5-13
passing from Pascal to C, 7-41 to 7-43
passing from Pascal to FORTRAN, 7-24 to

7-28
passing pointers to, 5-11 to 5-13
passing pointers to unaligned objects, 3-76
procedure pointers, 3-50 to 3-51

dereferencing, 4-145
recursion, 5-26

sample program, 5-26
systems programming, 4-10, E-1 to E-5
univ (universal parameter specification),

5-10 to 5-11
using as parameters, 5-13 to 5-15
using section attribute to gain efficiency,

5-24 to 5-26
value parameters, 5-6 to 5-7

sample program, 5-6
variable parameters, 5-6 to 5-7

sample program, 5-6

Rshft function, 4-6, 4-171 to 4-172
sample program, 4-30

Run-time errors
deviation from standard Pascal, 0-1
error messages, 9-50 to 9-54

s
Sample programs, 1-2 to 1-4

abs_example, 4-12
addr_example, 4-14 to 4-15
align_example, 4-17
and_example, 4-20
append, 7-40
append_example, 4-21 to 4-22
arctan_example, 4-24
array_example, 4-28
arshft_example, 4-30
begin_end_example, 4-31 to 4-32, 4-71 to

4-72
bit_operators_example, 4-35
build_a_linked_list, 4-119 to 4-122
capitalize, 7-33
case_example, 4-38
chr_example, 4-40
close_example, 4-41 to 4-42
confiL example, 6-13 to 6-14
cos_example, 4-59 to 4-60
discard_example, 4-62 to 4-63

22 Index

div_example, 4-67
eof_example, 4-74
eoln_example, 4-75 to 4-76
exit_example, 4-77 to 4-78
exp_example, 4-79 to 4-80
find_and_replace_example, 4-84 to 4-86
firstof_lastof_example, 4-88
for_example, 4-90 to 4-91
forward_example, 5-16 to 5-17
funcs _for_fortran -P, 7-26
get_example, 4-93 to 4-94
goto_example, 4-97 to 4-98
hypot_c, 7-31
hypot_sub, 7-20
hypotenuse, 7-18
if_example, 4-100 to 4-101
in_example, 4-102 to 4-103
in_out_example, 5-9
in_range_example, 4-105
labeled, 2-9
In_example, 4-107 to 4-108
Ish ft_example, 4-109 to 4-110
max_example, 4-111 to 4-112
min_example, 4-114
mixed_types, 7-23
mod_example, 4-116
nestinLexample, 2-20
next_example, 4-124
not_example, 4-127
odd_example, 4-128
open_example, 4-132 to 4-133
or_example, 4-136
ord_example, 4-138
pack_example, 4-140 to 4-141
page_example, 4-143
pas_to_c_arrays, 7-37
pas_to_c_hypo, 7-31
pas_to_c-ptrs, 7-39
pas_to_c_strings, 7-32
pas_to_c_strings2, 7-34
pas_to_ftn_hypo_func, 7-18
pas_to_ftn_hypo_sub, 7-19
pas_to_ftn_mixed, 7-21 to 7-24
pass_char, 7-35
pass_func_to_c-p, 7-42
pass_func_to_fortran-p, 7-25
pass_routine-ptrs, 5-12
pred_example, 4-148
ptoc_and_ctop_example, 4-149 to 4-151
put_example, 4-153 to 4-154
read_example, 4-156 to 4-157
recursive_example, 5 - 26
repeat_example, 4-161 to 4-162
reset_example, 4-165

Sample programs (continued)
return_example, 4-166 to 4-167
rewrite_example, 4-169
round_example, 4-170
sample_types, 3-3
set_example, 4-177 to 4-178
sin_example, 4-180
single_dim, 7-37
size of_example , 4-183
sort_array_c, 7-41
sort_array_f, 7-27
sqr_example, 4-184 to 4-185
sqrt_example, 4-186 to 4-187
substr_example, 4-190
succ_example, 4-192
trunc_example, 4-195 to 4-196
ttf_example (type transfer functions),

4-199
unpack_example, 4-201 to 4-202
value .J>arameter _example, 5-7
var.J>arameter_example, 5-6 to 5-7
variable_attribute _example, 5 -18
while_example, 4-209 to 4-210
with_example, 4-213 to 4-214
write_example, 4-220
xor_example, 4-222
See also by statement name

Scope
of attributes, 3-78
of routine options, 5-22
of variables

global and local, 2-17 to 2-19
nested routines, 2-19 to 2-21

Searching alternate directories for include files,
compiler option, 6-20 to 6-21

Section routine attribute, 5-24 to 5-26

Sections
definition, 3-52
extension to standard, C-2
putting variables into, 3-52 to 3-53

example, 7-7
See also Data sections

Semicolon (;)
in compiler directives, 4-43 to 4-44
in statements, 4-188

Series 10000
alignment and, 3-74
conditional compilation, 4-46, 4-57
and natural alignment, 3-64
predeclared conditional variable, 4-46

Set data types, 3-15 to 3-17
alignment, 3-35
assigning values to, 4-173
declaring, 3-15
determining membership with in operator,

4-102 to 4-103
equality of, 4-176
exclusion, 4-175
initializing, 3-15 to 3-16
internal representation of, 3-16 to 3-17
intersection of, 4-175
operations, 4-173 to 4-178

sample program, 4-177 to 4-178
packed, 3-15

deviation from standard Pascal, D-1
size of, 3-16
subsets, 4-176
supersets, 4-176
table of operators, 4-174
union of, 4-174
union operator (+), 4-3

Set_sr function, E-5

Shifting bits
arithmetic right shift, 4-29 to 4-30
left shift, 4-109 to 4-110
right shift, 4-171 to 4-172

Short-circuit operators
and then, 4-3, 4-18 to 4-20
definition, 4-19
or else, 4-3, 4-134 to 4-136

Shortword boundary, definition, 3-23

Side effects, discarding unused return values,
4-62 to 4-63

Sign bit
and arshft function, 4-29
and rshft function, 4-171

Simple data types
list of, 3-1
See also Data types

Sin function, 4-6, 4-179 to 4-180
sample program, 4-180

Single, data type. See Real number data types

Single· quote (')
as character constant delimiter, 3-12
as string delimiter, 2-4 to 2-6

Single-precision numbers. See Real number data
types

Index 23

Size
of array elements, 3-46, 3-47
of arrays, 3-37

deviation from standard Pascal, 0-1
initializing default, 3-42

attributes, 3-60 to 3-62
minimum for data types, 3-61
of records, 3-26

packed, 3-35
of sets, 3-16
See also Sizeof function

Sizeof function, 4-181 to 4-183
sample program, 4-183

Skipping a loop interation, with next statement,
4-123 to 4-124

Slash (I), as division operator, 4-3

-slib compiler option, 6-33 to 6-34

%slibrary directive, 4-56

Software development. See Program develop-
ment

Spaces, in prompt-strings, 4-130

Spreading source code across lines, 2-6 to 2-7

Sqr function, 4-6, 4-184 to 4-185
sample program, 4-184 to 4-185

Sqrt function, 4-6, 4-186 to 4-187
sample program, 4-186 to 4-187

Square brackets ([])
in array declaration, 3-38
in array initialization, 3-39
and set assignment, 4-173

Square root function, 4-186 to 4-187

Squaring a number, 4-184 to 4-185

Stack frame, run-time error, 9-50, 9-53 to
9-54

Stack pointer, 5-20

Stack unwind error, 9-50, 9-53 to 9-54

Standard input. See I/O

Standard output. See I/O

Standard Pascal
deviations from, 0-1 to 0-5
extensions, list of, C-1 to C-14
implementation, compiler option, 6-23
messages about nonstandard usages, compil-

er option, 6-35

Statement, definition, 4-188

24 Index

Static
clause, definition, 7-3
variables, initializing, 3-4, 3-7

-std compiler option, 6-35

Stopping. See Terminating

Storage
allocating with new procedure, 4-117 to

4-122
de allocating with dispose procedure, 4-64

to 4-65
dynamic, within routines, 3-4
packed records, 3-36
specifying with size attributes, 3-60 to 3-62
static, initializing variables, 3-4, 3-7
See also Internal representation; Size

Stream marker, 8-5 to 8-6
advancing with get, 4-92 to 4-94
advancing with put, 4-152 to 4-154
advancing with read and readln, 4-155 to

4-157
advancing with write, 4-215 to 4-220
and end-of-line character, 4-75
setting to beginning of file with reset,

4-164 to 4-165
setting with find procedure, 4-83 to 4-86
setting with rewrite, 4-168 to 4-169

Streams
lOs and file variables, 8-3
lOS (Input Output Stream) calls, 8-1 to

8-2

String, predefined array type, 3-38
See also Strings

Strings, 2-4 to 2-6
C correspondence, 7-32 to 7-35

sample program, 7-32 to 7-35
concatenating with append, 4-21 to 4-22

sample program, 4-21 to 4-22
definition, 2-4, 3-38
embedding unprintable characters, 2-4 to

2-6
extracting substrings, 4-189 to 4-190
finding length of, 4-181 to 4-183
internal representation, 3-44
null character in variable-length, 4-205
operations, 4-204 to 4-207
padding, 4-27
passing from C to Pascal, 4-61
passing from Pascal to C, 4-149 to 4-151
and single quotes, 2-4
and sizeof function, 4-181
variable-length, 3-44 to 3-45
and write procedure, 4-216

Structured data types
alignment of, in packed records, 3-35
list of, 3-2
See also Data types

-subchk compiler option, 6-35

Subrange data types, 3-14 to 3-15
internal representation of, 3-14 to 3-15

Subscripts
in arrays, 4-25
checking, compiler option, 6-35

Subsets, 4-176

Substr function, 4-189 to 4-190
sample program, 4-190

Substrings, 4-189 to 4-190

Subtraction, 4-3

Succ function, 4-191 to 4-192
sample program, 4-192

Summary of technical changes, iv to v

Supersets, 4-176 to 4-177

Suppressing
COFF line number tables, compiler option,

6-26
type checking. See Type checking

Switches. See Attributes for variables and types;
Compiler options; Routine options

Symbolic map
compiler option, 6-24 to 6-25
for include files, compiler option, 6-21

Symbols, using internal to make routines local,
5-17

Syntax
-config option, 6-12
-cpu option, 6-14
-info option, 6-21
-inlib option, 6-23
-I option, 6-24
-slib option, 6-33
aligned attribute, 3-63
aligned record. 3-33
attributes for variables and types, 3-53
case statement, 4-36
data sections, 3-52
file variables, 3-48
fixed records, 3-17
function pointers, 3-51
initializing, pointers, 3-51
initializing data, records, 3-21

module heading, 7-2
natural attribute, 3-63
packed arrays, 3-45
pas command, 6-4
pointers, 3-49
procedure pointers, 3-51
repeat counts, 3-40
routine options, 5-15
sets, 3-15
size attributes, 3-60
unaligned record, 3-34
variable-length strings, 3-44
variant records, 3-19
See also name of command

System calls
error status parameter, 9-1
lOS (Input Output Stream) calls, 8-1 to

8-2
VFMT (variable format) calls, 8-2 to 8-3

Systems programming routines, 4-10, E-1 to
E-5

T

Tag fields. See Record data types

Tangent function, 4-23

Target workstations
predeclared conditional variables, 4-46
selecting, compiler option, 6-14 to 6-17

tb utility, 6-40 to 6-41

Technical changes, summary, iv to v

Terminating
a for loop, 4-90
a group of statements with end, 4-71 to

4-72
a loop with exit, 4-77 to 4-78
program

with noreturn option, 5-20
with return statement, 4-166

See also Transferring control

Testing
for end of file, 4-73 to 4-74
for end of line, 4-75 to 4-76
for open and find errors, 9-3 to 9-4
whether integer is odd, 4-128

Text, files, 3-48
definition, 3-48
See also Files

.text section, 2-10, 5-24 to 5-26

Index 2S

Then. See If statement

Tilde C), as bitwise negation operator, 4-3

To. See For statement

Tools. See Utilities

Traceback (tb) utility, 6-40 to 6-41
and run-time errors, 9-52

Transferring control
abnormally, 5-19
with case statement, 4-36 to 4-38
exit statement, 4-77 to 4-78
with go to statement, 4-95 to 4-98
with next statement, 4-123 to 4-124
noreturn routine option, 5-20
out of for loop, 4-90
with return statement, 4-166 to 4-167

Trigonometric functions, predeclared, 4-5 to
4-8
arctan, 4-23 to 4-24
cos, 4-59 to 4-60
sin, 4-179 to 4-180

Trune function, 4-6, 4-195 to 4-196
sample program, 4-195 to 4-196

Truncating, reals to integers, 4-195 to 4-196

Truth tables
bit operators, 4-33 to 4-35
logical and operator, 4-18
logical or operator, 4-134

Type checking
parameters, 5-11
for subranges with in_range, 3-14
suppressing with univ parameter type, 5-10

to 5-11

Type declaration part, ,2-13 to 2-14

Type transfer functions, 4-197 to 4-199
and manipulating addresses, 4-144 to

4-145
sample program, 4-199

u
UASC files. See Unstruct files

Unaligned, records, 3-33 to 3-35

Underscore U, in identifier names, 1-4

Union, operation with sets, 4-174

Univ, 5-10 to 5-11

Univ.J>tr, 3-50

26 Index

Universal parameter specification, 5-10 to 5-11

Universal pointer type, 3-50

UNIX
ar archiver, 6-38 to 6-39
compatible text files, 8-6
debugging with dbx, 6-40
file compatibility, 3-48

Unpack procedure, 4-200 to 4-202
sample program, 4-201 to 4-202

Unpacked arrays
and pack procedure, 4-139 to 4-141
and unpack procedure, 4-200 to 4-202

Unsigned types, 3-9 to 3-10

Unstruct files, 3-48, 3-49
definition, 8-6

Until. See Repeat statement

Up-arrow ("). See Caret (")

Uppercase and lowercase. See Case sensitivity

User interfaces
Domain/Dialogue, 6-42 to 6-43
Open Dialogue, 6-42 to 6-43

Utilities
cpuhelp, 6-17
dbx, 6-40
debugging, 6-39 to 6-40
Domain/Dialogue, 6-42 to 6-43
Domain Distributed Debugging Environ-

ment, 6-39
Domain/PAK (Domain Performance Analy­

sis Kit), 6-43
DSEE (Domain Software Engineering Envi-

ronment), 6-41 to 6-42
getpas, 1-2 to 1-4
Open Dialogue, 6-42 to 6-43
for program development, overview, 6-40

to 6-43
traceback, 6-40 to 6-41

v
Val_param routine option, 5-3, 5-19

Value parameters. See Parameters

Var declaration part, 2-14 to 2-15

%var directive, 4-50

Variable parameters. See Parameters

Variable routine option, 5-17 to 5-18
sample program, 5-18

Variable-Length strings
and ctop procedure, 4-61
operations, 4-204 to 4-207
and ptoc procedure, 4-149 to 4-151
and sizeof function, 4-181
and write procedure, 4-216

Variables
arrays, 3-37 to 3-48

See also Arrays
Boolean, 3-10 to 3-11

See also Boolean data types
character type, 3-11 to 3-13

See also Character data types
correspondence, in C, 7-43 to 7-46
declaring, 2-14 to 2-15
file, 3-48 to 3-49

See also Files
global

overview, 2-17 to 2-19
sample program, 2-18 to 2-19

initializing, 3-4 to 3-5
integers, 3-3 to 3-6

See also Integer data types
local

overview, 2-17 to 2-19
sample program, 2-18 to 2-19

real numbers, 3-6 to 3-9
See also Real number data types

record type, 3-17 to 3-37
See also Record data types

sets, 3-15 to 3-17
See also Set data types

subrange data, 3-14 to 3-15

Variant records, 3-19 to 3-20
with sizeof function, 4-182
using, 4-159 to 4-160

Variants, compiler, 6-3

Varying, type specifier, 3-44
See also Strings, variable-length

Varying array
first value, 4-87
last value, 4-106

Version, of compiler, 6-3
compiler option, 6-35

-version compiler option, 6-35

VFMT (variable format) calls, 8-2 to 8-3

Volatile attribute, 3-56
inheritance, 3-76 to 3-77

w
-warn compiler option, 6-35 to 6-36

%warning 'string' directive, 4-51 to 4-52

Warnings
compiler option, 6-35 to 6-36
definition, 9-4
list of messages, 9-5 to 9-49

While statement, 4-208 to 4-210
sample program, 4-209 to 4-210

Widths, of fields for write and writeln, 4-215
to 4-220

With statement, 4-211 to 4-214
extension to standard, example, C-10
sample program,4-213 to 4-214

Word
alignment

example, 3-71
specifying with aligned attribute, 3-63
%word_alignment directive, 4-57

attribute, 3-60 to 3-62

%word_alignment directive, 4-57

Workstation selection, compiler option, 6-14 to
6-17
list of arguments, 6-16

Write, writeln procedures, 4-215 to 4-220,
8-8 to 8-9
compared to put procedure, 4-153
flushing buffer before closing, 4-153
sample program, 4-220

Writing, files. See Put procedure; Replace pro­
cedure

x
Xor function, 4-6, 4-221 to 4-222

sample program, 4-222

-xrs compiler option, 6-36

----88----

Index 27

Reader's Response

Please take a few minutes to give us the information we need to revise and improve our manuals from your point
of view.

Document Title: Domain Pascal Language Reference
Order No.: 000792-AOl

User Profile
Your Name ________________ Title _______________ _

Company __ ____

Address ---
Telephone number (~--~) ------------------

When you use the HP/Apollo system, what job(s) do you perform?

Application End User D Hardware Engineering D
D

Programming D
System Administration D Other (describe) __________________ _

Characterize your level of experience in using the HP/Apollo system:

Experienced user (2+ yrs.) D New user (6 mos. or less) D
D Moderately experienced user (6 mos.-2 yrs.)

What programming languages do you use with the HP/Apollo system?

Distribution

How do you know what manuals are available to support the products you're using or want to use?

What is a major concern for you in ordering books?

How would you evaluate this book?

Excellent Average Poor

Completeness 1 2 3 4 5

Accuracy 1 2 3 4 5

Usability 1 2 3 4 5
Additional Comments:

I
I
I
I

II
III

II
11
II
II

I
I
I
I

___ foiL ________________________________ I

fold

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD. MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

Apollo Systems Division
A Subsidiary of Hewlett-Packard Company
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Reader's Response

Please take a few minutes to give us the information we need to revise and improve our manuals from your point
of view.

Document Title: Domain Pascal Language Reference
Order No.: 000792-AO 1

User Profile
Your Name ________________ Title ________________ _

Company __ _

Address ___ _

Telephone number <-> --------
When you use the HP/Apollo system, what job(s) do you perform?

Application End User o Hardware Engineering o
o

Programming 0
System Administration 0 Other (describe) _______________ _

Characterize your level of experience in using the HP/Apollo system:

Experienced user (2+ yrs.) o New user (6 mos. or less) D
o Moderately experienced user (6 mos.-2 yrs.)

What programming languages do you use with the HP/Apollo system?

Distribution

How do you know what manuals are available to support the products you're using or want to use?

What is a major concern for you in ordering books?

rIow would you evaluate this book?

Excellent Average Poor

Completeness 1 2 3 4 5

Accuracy 1 2 3 4 5

Usability 1 2 3 4 5

Additional Comments:

No posta2e necessary if mailed in the U.S.

fold

I
'I
I:
f
I
r

fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD. MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

Apollo Systems Division
A Subsidiary of Hewlett-Packard Company
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Order Number 000792-AOl

111111111111 11111 11111111 111111111111111 1111111 1111111111111
~ 9 e e 7 9 2 - A e 1 ~

Flin- HEWLETT
a!~ PACKARD

